TY - CONF A1 - Skrotzki, Birgit A1 - Gesell, Stephan A1 - Rehmer, Birgit A1 - Fedelich, Bernard T1 - Fatigue Crack Growth of Heat Resistant Austenitic Cast Iron under Isothermal and Anisothermal Conditions N2 - The heat-resistant cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) was investigated for its fatigue crack growth behavior at room and high temperatures. Force-controlled tests were carried out at constant temperatures (20 °C, 500 °C, 700 °C) without and with hold time and different load ratios. The crack growth behavior was also characterized under TMF loading (Tmin = 400 °C, Tmax = 700 °C) by applying IP and OP conditions and different load ratios. Three different techniques were combined to monitor crack growth: potential drop, thermography, and compliance method. The effect of the different loading conditions on the fatigue crack growth behavior will be presented and discussed. T2 - TMF Workshop 2024 CY - Berlin, Germany DA - 25.04.2024 KW - Fatigue crack growth KW - Thermomechanical fatigue KW - Austenitic cast iron KW - Ni-Resist PY - 2024 AN - OPUS4-59964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin A1 - Mair, Georg A1 - Gesell, Stephan T1 - Determination of Distribution Function used in MCS on Safety Analysis of Hydrogen Pressure Vessel N2 - The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often, GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and KolmogorovSmirnov tests are the mostly favorable approaches for Goodness of Fit. However, the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments. In this study, six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) NormLog based method, b) Least squares regression, c) Weighted least squares regression, d) A linear approach based on good linear unbiased estimators, e) Maximum likelihood estimation and f) The method of moments estimation. In addition, various approaches of ranking function are considered. In the study, Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here, the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end, the results are discussed, and the best reliable methods are proposed. T2 - ICHS2019 Conference CY - Adelaide, Australia DA - 24.09.2019 KW - Monte-Carlo Simulation KW - Distribution function KW - Weibull Distribution PY - 2019 AN - OPUS4-49652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - DGM Fachausschuss Titan CY - Liebherr-Aerospace Lindenberg GmbH, Germany DA - 12.11.2019 KW - LCF KW - Titan KW - Ti-6Al-4V KW - Ti64 KW - TiAl5V4 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Häusler, I. A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza T1 - Age hardening of a high purity Al‐4Cu‐1Li‐0.25Mn alloy: Microstructural investigation and phase‐field simulation N2 - Research results considering the "Age Hardening of a High Purity Al‐4Cu‐1Li‐0.25Mn Alloy: Microstructural Investigation and Phase‐Field Simulation" were presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Age hardening KW - Aluminium KW - Phase-field simulation KW - Precipitates KW - Transmission electron microscopy PY - 2018 AN - OPUS4-45286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Digital representation of materials testing data for semantic web analytics: Tensile stress relaxation testing use case N2 - This study aims to represent an approach for transferring the materials testing datasets to the digital schema that meets the prerequisites of the semantic web. As a use case, the tensile stress relaxation testing method was evaluated and the testing datasets for several copper alloys were prepared. The tensile stress relaxation testing ontology (TSRTO) was modeled following the test standard requirements and by utilizing the appropriate upper-level ontologies. Eventually, mapping the testing datasets into the knowledge graph and converting the data-mapped graphs to the machine-readable Resource Description Framework (RDF) schema led to the preparation of the digital version of testing data which can be efficiently queried on the web. T2 - ICMDA 2024: 7th International Conference on Materials Design and Applications CY - Tokyo, Japan  DA - 09.04.2024 KW - Digitalization KW - Tensile stress relaxation KW - Ontology KW - Mechanical testing KW - Semantic web PY - 2024 AN - OPUS4-59979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elfetni, Seif A1 - Darvishi Kamachali, Reza T1 - Application of deep learning to multi-phase-field modelling and simulation N2 - Recent advances in Deep Learning (DL) have significantly impacted the field of materials modelling. DL tools have been recently considered as promising tools to address the complex relationships among processing, microstructure and property of materials. The thermal stability of polycrystalline materials is a highly interesting and complex problem that could be addressed using DL techniques. The Multi-Phase-Field (MPF) method has emerged as a powerful tool for addressing grain growth phenomena from multiple perspectives. Unlike sharp-interface based methods, the MPF approach bypasses the need for detailed information on individual grains. In this work, we use DL to address issues related to MPF simulations of grain growth including numerical efficiency, computing speed, and resource consumption. This presents specific challenges for high-performance computing (HPC) due to the large datasets and complex computations required by both MPF and DL methods. We study various 3D microstructure settings with the goal of accelerating the simulation process while exploring different physical effects. In particular, the impact of grain boundary and triple junction energies on grain growth are to be investigated. The results will be presented in terms of the evolving size and shape distribution of the grains. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Phase-Field Simulation KW - Microstructure Evolution KW - Physics-informed Neural Network KW - Machine Learning PY - 2023 AN - OPUS4-58225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas T1 - Concrete under cyclic loading a continuum damage model and a temporal multiscale approach N2 - The durability of concrete structures and its performance over the lifetime is strongly influenced by many interacting phenomena such as e.g. mechanical degradation due to fatigue loading, loss of prestress, degradation due to chemical reactions or creep and shrinkage. Failure due to cyclic loading is generally not instantaneous, but characterized by a steady damage accumulation. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. A key limitation is that the models often do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. The objective of this paper is the presentation of numerical methods for the simulation of concrete under fatigue loading using a temporal multiscale method. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different time integration schemes. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Cycle jump KW - Fatigue damage KW - Concrete PY - 2018 AN - OPUS4-45696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Kühn, H.-J. A1 - Matzak, Kathrin A1 - Rehmer, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhal-tens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zu-sammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - 21. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 06.03.2019 KW - Kriechen KW - LCF KW - TMF KW - Lebensdauer KW - Ni-Resist PY - 2019 AN - OPUS4-47548 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - Werkstoffwoche 2019 CY - Dresden, Germany DA - 18.09.2019 KW - Titan KW - TiAl5V4 KW - Ti-6Al-4V KW - Ti64 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue KW - LCF PY - 2019 AN - OPUS4-49755 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Rehmer, Birgit T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruns, Sebastian A1 - Bayerlein, Bernd A1 - Grönewald, Mathias A1 - Kryeziu, Jeonna A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - Portella, Pedro Dolabella A1 - Durst, Karsten T1 - Digitalizing a lab course for undergraduate students: ELN, ontology, data management N2 - We report about a joint project aiming at the digitalization of a lab course in materials testing. The undergraduate students were asked to prepare samples of a precipitation hardened aluminum alloy and characterize them using hardness and tensile tests. In a first step, we developed the frames for the digital labor notebook using eLabFTW. The primary data and the relevant metadata of each run were saved in a central database and made available for analysis and report issues. The whole set of results produced in a course was made available in the database. This database can be improved and serve as an open repository for data on this specific alloy. The logical frame for the joint project was provided by the PMD Core Ontology (PMDco), a mid-level ontology that enables the representation and description of processes and process chains in an MSE-specific manner, ensuring full traceability of generated data. For the digitalization of this lab course, the tensile test ontology (TTO) was applied which is designed as a module of the PMDco using strongly related semantic concepts. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Electronic Lab Notebook KW - FAIR data management KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Waitelonis, J. A1 - Birkholz, H. A1 - Bruns, S. A1 - Grönewald, M. A1 - Portella, Pedro Dolabella T1 - Hochwertige, verlässliche und FAIRe Daten erstellen: Von Ontologien und elektronischen Laborbüchern zu Datenmanagement und Wissenstransfer N2 - Das hochaktuelle Thema der Integration und Wiederverwendung von Wissen und Daten aus Herstellung, Bearbeitung und Charakterisierung von Materialien wird im Zuge der digitalen Transformation in der Materialwissenschaft und Werkstofftechnologie in verschiedenen Projekten adressiert. Dabei stehen die Interoperabilität von nach FAIR-Prinzipien erstellten und veröffentlichten Daten und Anwendungen im Vordergrund. Zur Umsetzung eines komplexen Datenmanagements sowie der Digitalisierung im Bereich der Materialwissenschaften etablieren sich Ontologien zunehmend als belastbares Werkzeug. Sie ermöglichen sowohl menschenlesbare als auch maschinenverständliche und -interpretierbare Wissensrepräsentationen durch semantische Konzeptualisierungen. Im Rahmen des Projektes Plattform MaterialDigital (PMD, materialdigital.de) werden Ontologien verschiedener Ebenen entwickelt (verbindende mid-level sowie Domänen-Ontologien). Die PMD-Kernontologie (PMD Core Ontology - PMDco) ist eine Ontologie der mittleren Ebene), die Verbindungen zwischen spezifischeren MSE-Anwendungsontologien und domänenneutralen Konzepten herstellt, die in bereits etablierten Ontologien höherer Ebenen (top-level Ontology) verwendet werden. Sie stellt somit einen umfassenden Satz von durch Konsensbildung in der Gemeinschaft (geteiltes Vokabular) entstanden Bausteinen grundlegender Konzepte aus der Materialwissenschaft und Werkstofftechnik (MSE) dar. Das primäre Ziel des PMDco-Designs ist es, die Interoperabilität zwischen verschiedenen MSE-bezogenen und anderen Ontologien zu ermöglichen. Die PMDco dient als umfassend ausgelegte und erweiterbare semantische Zwischenschicht, die gemeinsame MSE-Konzepte durch semantisches Mapping auf andere Darstellungen vereinheitlicht, was sie zu einem effizienten Werkzeug zur Strukturierung von MSE-Wissen macht. In dieser Präsentation wird die Version 2.0 der PMDco vorgestellt. Weiterhin wird eine auf die PMDco bezogene normenkonforme ontologische Repräsentation zur Speicherung und Weiterverarbeitung von Zugversuchsdaten präsentiert, die in enger Zusammenarbeit mit Standardisierungsgremien erstellt wurde. Dies umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verbindung von Ontologie und Daten. Letztendlich können die entsprechenden Daten in einem Triple Store abgelegt und abgefragt werden. Auf Basis dieser Zugversuchsontologie wurde im Folgenden unter Verwendung eines elektronischen Laborbuches (electonic lab notebook – ELN) zur Datenaufnahme eine Praktikumsreihe von Universitätsstudierenden digitalisiert. Dadurch wurde eine vollständig digital integrierte Versuchsführung ermöglicht, die auf andere Versuchsreihen und Experimente übertragbar ist und ebenfalls vorgestellt werden soll. Neben einer erleichterten Aufnahme, Analyse und (Wieder-)Verwendbarkeit von Daten wird damit eine Sensibilisierung von Studierenden für Datenstrukturierung sowie semantische Technologien im Sinne der Aus- und Weiterbildung erreicht. T2 - DVM-Tagung Werkstoffprüfung CY - Berlin, Germany DA - 23.11.2023 KW - Ontologie KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco KW - Zugversuchsontologie KW - Zugversuch KW - Elektronisches Laborbuch (ELN) PY - 2023 AN - OPUS4-59030 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Waitelonis, J. A1 - Birkholz, H. A1 - v. Hartrott, P. A1 - Portella, Pedro Dolabella T1 - FAIR Data in Platform MaterialDigital (PMD) - Ontologies , Semantic Data Integration and Data Exchange N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD, https://materialdigital.de) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this presentation shows the efforts taken within the PMD project towards the digitalization in MSE such as the development of the mid-level PMD core ontology (PMDco, https://github.com/materialdigital/core-ontology). Furthermore, selected results of a PMD partner project use case addressing data and knowledge management from synthesis, production, and characterization of materials are shown. T2 - 1st VMAP User Meeting 2024 CY - Sankt Augustin, Germany DA - 14.02.2024 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - Data Interoperability KW - Data Exchange KW - Data Structures PY - 2024 AN - OPUS4-59567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2023 AN - OPUS4-58266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Gas turbine components, made of nickel-based alloys, undergo material damage due to high temperatures and mechanical stresses. These components need periodic replacement to avoid efficiency loss and failure. Repair of these parts is more cost-effective than replacement. State-of-the-art repair technologies, including different additive manufacturing (AM) and brazing processes, are considered for efficient restoration. Materials properties mismatches and/or internal defects in repaired parts may expedite crack initiation and propagation, reducing fatigue life. To understand the crack growth behavior in joining zones and predict the remaining life of repaired components, fatigue crack growth (FCG) tests were conducted on specimens of nickel-based alloys joined via brazing, pre-sintered preforms and AM. The FCG experimental technique was successfully adapted for joined specimens and results indicate that the investigated braze material provides a lower resistance to crack growth. In AM-sandwich specimens, the crack growth rates are significantly reduced at the interface of AM and cast material. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, USA DA - 03.03.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-59854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built. The LSD technology can be combined with binder jetting to develop the so-called “LSD-print” process. LSD-print combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to traditional processing. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour. T2 - 3rd Global Conference and Exhibition on Smart Additive Manufacturing, Design & Evaluation Smart MADE CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - LSD-print KW - Slurry KW - Binder jetting PY - 2024 AN - OPUS4-60055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -