TY - CONF A1 - Trappe, Volker A1 - Kraus, David T1 - Thermo-mechanical fatigue of glass fiber reinforced polymer N2 - Glass fiber reinforced polymer (GFRP) materials in practical applications have to endure cyclic mechanical loading in a wide temperature range (e.g. aircraft applications, automotive, wind turbine blades). In this study the static strength and fatigue behavior of GFRP was investigated in a temperature range from 213 K to 343 K. Therefor the coefficients of thermal expansion of the composite as well as the matrix are measured in this temperature interval. The inverse laminate theory was extended and used to calculate the inter fiber-failure effort for a virtual UD-layer according to the layer wise strength approach. The experimentally determined results are compared with the micro-mechanical model according to Krimmer, which has been enhanced to include the effect of temperature and fiber-perpendicular failure modes. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve, as it was similar done for the fatigue behavior of CFRP and GFRP to very high load cycles at room temperature. T2 - ICFC8 - The 8th International Conference on the Fatigue of Composites CY - Online meeting DA - 23.06.2021 KW - Glass fibre reinforced plastics KW - Fatigue KW - Thermo-mechanical-loading PY - 2021 AN - OPUS4-52910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Sintering of silver‑alkali zinc borate glass‑composites N2 - Since decades electric contacts based on silver metallization pastes are key components of photovoltaics and advanced microelectronics. For the metallization of commercial Si solar cells, high conductive silver glass pastes are cost effectively applicated by screen printing. Nevertheless, silver pastes are still one of the most crucial and expensive none Si materials in solar cells. Ever shorter time to market as well as increasing demands on reduced Ag consumption and line width require the targeted development of silver-glass-pastes with increased sinter ability and electrical conductivity. As a main difficulty, however, the liquid phase sintering of silver glass pastes is poorly understood so far. In the present study, the influence of different network modifier in alkali-zinc-borate paste glasses on liquid phase sintering of silver-glass-pastes was investigated. Low melting X2O-ZnO-B2O3 glasses with X = Na, Li and Rb (abbr. LZB, NZB, and RZB) were utilized to prepare silver-glass-composites containing 30 %Vol glass. Shrinkage behavior of the silver-glass-composites compared with that of pure silver and pure glass powder compacts was studied with heating microscopy. The powder compacts were uniaxially pressed and heated at 5 K/min to the glass softening temperature. Glass transformation temperature and viscosity of the glasses were respectively measured with dilatometry and rotational viscometry. The thermal behavior of the pure glasses was analyzed with thermal analysis. Additionally, the contact angle of glass on pure silver foil was determined by means of heating microscopy between room temperature and 830 °C. Thermal analysis of the alkali-zinc-borate-glasses under study has shown transformation temperatures between 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB). For all glasses crystallization was found to start approximately at about 550 °C. However, different peak areas hint on a different degree of crystallization. Conformingly, the sintering behavior, measured in terms of area shrinkage, significantly differed for the silver-pastes under study. For silver-pastes with NZB or LZB-glass, sintering starts at 464 °C for NZB Ag pastes and at 451 °C for LZB Ag pastes and ends at 597 °C for NZB Ag paste and at 594 °C for LZB Ag paste. The sintering of the RZB Ag paste proceeds between 426 °C and 703 °C. The final densification was retarded possibly due to crystallization or swelling. The low sinter onset at 426 °C seems to correlate with the good wetting behavior of the RZB glass. Thus, the lowest apparent contact angle between the just densified powder compact sintered at a silver substrate was found for this glass. Moreover, microstructure analyses of the various composites indicate differences in silver dissolution and reprecipitation. T2 - Technology Crossover Extravaganza, HiTEC/CICMT/APEPS CY - Online meeting DA - 26.04.2021 KW - Silver-glass-metallization-paste KW - Sintering KW - Crystallization KW - Alkali ions KW - Sintering atmosphere PY - 2021 AN - OPUS4-52872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ansätze zur digitalen Wissensrepräsentation aus der Plattform MaterialDigital (PMD) N2 - Die Digitalisierung von Materialien und Prozessen stellt eine große Herausforderung dar, die nur durch eine Bündelung der Bemühungen aller Beteiligten in diesem Bereich erreicht werden kann. Bei einer derartigen digitalen Beschreibung spielen Datenanalysemethoden, eine Qualitätssicherung von Prozessen inklusive Input- und Output-Daten sowie die Interoperabilität zwischen Anwendungen nach den FAIR-Prinzipien eine wichtige Rolle. Dies umfasst das Speichern, Verarbeiten und Abfragen von Daten in einer vorzugsweise standardisierten Form (Beteiligung von Normungsgremien). Zur Bewältigung dieser Herausforderung ist eine mit allen Stakeholdern konsistente Kontextualisierung der Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Eine zentrale Betrachtungsweise in diesem Zusammenhang ist die Realisierung von (automatisierten) Datenpipelines, die eine Beschreibung und Verfolgung von Daten ausgehend von ihrer Erzeugung, bspw. in einem Messgerät, bis zu ihrer globalen Verwendung in möglicherweise verschiedenen Kontexten beinhalten. Erste Bemühungen und Ansätze zu diesen Problemstellungen führten im Projekt Innovations-Plattform Material Digital (PMD, materialdigital.de) zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. Weiterhin wurde, ausgehend von der domänenspezifischen Entwicklung von Anwendungsontologien, eine Kernontologie erstellt, die eine übergeordnete Verbindung von ontologischen Konzepten aufgrund der Verwendung gleichen Vokabulars und semantischer Verknüpfungen erlaubt. Diese sowie die das PMD-Projekt selbst werden ebenfalls in dieser Präsentation vorgestellt. T2 - DVM Workshop: Grundlagen und Beispiele zur Digitalisierung für die Materialforschung und -prüfung CY - Online meeting DA - 19.10.2021 KW - Plattform Material Digital (PMD) KW - Ontologie KW - Zugversuch KW - Wissensrepräsentation KW - Semantic Web PY - 2021 AN - OPUS4-53565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test Ontology used in Platform Material Digital (PMD) N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) is supposed to contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts within the joint project PMD in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. Furthermore, the presentation includes a live demonstration of queries possibly performed to query data that was uploaded in the PMD triple store. T2 - Online Workshop: An introduction to the semantic web and ontologies CY - Online meeting DA - 23.04.2021 KW - Ontology KW - Tensile Test KW - Platform Material Digital KW - PMD KW - Knowledge Graphs KW - Semantic Web PY - 2021 AN - OPUS4-52949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - The effect of fiber orientation mismatch on scarf joint damage mechanisms under fatigue load N2 - Wind turbine rotor blades commonly fail before their projected 20-year lifespan largely due to defects that originate during manufacturing and are propagated by operational fatigue and environmental conditions. The cost-intensive replacement outcomes lead to a high loss of earnings, and are one of the inhibitors of wind turbine production. A potential repair alternative to restoring the mechanical properties of such lightweight fiber reinforced polymer (FRP) structures is to locally patch these areas with scarf joints. This type of repair allows for a smoother load distribution across the joint, and is favored especially on structures where minor aerodynamic contour changes are key. The effects of such repairs on the structural integrity, however, is still largely unknown. Building upon an understanding of the static load failure mechanism of GFRP scarf joints, presented at the ICCS23 Joint Event in 2020, the influence of the fiber orientation mismatch between parent and repair materials of 1:50 scarf joints on the failure mechanism of monolithic glass FRP specimens under cyclic fatigue load were examined in this study. Specimens with various layups were produced with the vacuum-assisted resin infusion (VARI) process using biaxial E-glass non-crimp fabric (NCF). The patch layers were then joined directly to the parent structure with the VARI using biaxial E-glass NCF with half the areal weight of the parent side to allow for better drapability. This mimics the soft-to-hard patch style utilized in wind turbine blade shell field repairs. The specimens were tested under uniaxial fatigue load, during which they were periodically monitored for damage onset. A comparison of the +45/-45° and 0/90° layups allowed for an understanding of the role of a highly mismatching fiber orientation in the transition zone between parent and patch material on the failure mechanism of the scarf joint. In addition to the tensile strength and stiffness property recovery assessment, a grayscale analysis using in-situ camera images determined the damage state leading to failure in each region across the scarf joint, which varied in the parent material versus scarf joint region, providing insight to the critical regions in this composite structure under cyclic loading. T2 - ICCS24 - 24th International Conference on Composite Structures CY - Online meeting DA - 14.06.2021 KW - Glass fiber reinforced polymers KW - Scarf repairs KW - Damage mechanisms PY - 2021 AN - OPUS4-52817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung thermoelektrischer Multilayergeneratoren auf der Basis von Calciumcobaltit N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. N2 - Thermoelektrische Generatoren können zum „Energy harvesting“ für den autarken Betrieb von bspw. Sensoren eingesetzt werden. Eine interessante Alternative zu den herkömmlichen π-Typ Generatoren sind auf Grund der höheren Leistungsdichte und der guten Automatisierbarkeit thermoelektrische Multilayergeneratoren. Calciumcobaltit ist ein vielsprechendes oxidisches Thermoelektrika (p-Typ) mit stark anisotropen Eigenschaften. Die hier vorgestellte Studie zeigt die Entwicklung von texturierten Unileg-Multilayer-Generatoren mittels keramischer Multilayertechnologie. Calciumcobaltit wird durch Foliengießen und druckunterstützte Sinterung texturiert. Im Vergleich zur konventionellen Sinterung verbessert sich die Festigkeit um den Faktor 10. Die thermoelektrischen Eigenschaften können je nach verwendetem Druckniveau hinsichtlich maximalem Power Factor oder hinsichtlich maximalem Gütefaktor optimiert werden. Ein Glaskeramikkomposit wird als Isolationsmaterial mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungskoeffizienten entwickelt. Der Unileg-Multilayer-Generator wird in einem Schritt co-gesintert. Die hergestellten Demonstratoren erreichen 80% der simulierten Output-Leistung. Diese Ergebnisse stellen den ersten Machbarkeitsnachweis für die Herstellung von co-gesinterten Multilayer-Generatoren aus texturiertem Calciumcobaltit mit hohem Power Factor und hoher Festigkeit dar. T2 - Seminar des Lehrstuhls für Funktionsmaterialien, Universität Bayreuth CY - Online meeting DA - 18.06.2021 KW - Thermoelektrischer Generator KW - Multilayertechnik KW - Energy harvesting PY - 2021 AN - OPUS4-52834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -