TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Kruse, Julius A1 - Madia, Mauro A1 - Radners, Jan A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - The influence of aging and mean stress on fatigue of Al-alloy EN AW-2618A N2 - In this study, the influence of aging and mean stress on fatigue of the aluminium-alloy EN AW-2618A is investigated. Therefore axial fatigue tests are carried out on smooth specimens. The experiments show that the fatigue life decreases with increasing mean stress. Furthermore, the tests with the overaged specimens demonstrate that the number of cycles to failure is decreasing with increasing aging time. T2 - LCF9 CY - Berlin, Germany DA - 21.06.2022 KW - Fatigue KW - Aluminium alloy KW - EN AW-2618A KW - Damage Behavior PY - 2022 AN - OPUS4-55125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Butz, Adam A1 - Rehmer, Birgit A1 - Mäde, Lucas A1 - Vöse, Markus T1 - Experimental and analytical investigation of Low Cycle Fatigue Damage at notches in a polycrystalline Nickel base superalloy N2 - Turbine blades often contain cylindric holes used to generate an air film that protects the blade alloy from the hot gases. These cooling holes of diameter around one mm are drilled by laser through the thickness of the blades. Unfortunately, the resulting stress concentration and the drilling-induced damage are known to favor crack initiation from the holes. It is thus necessary to assess the impact of these cooling holes on the structural integrity of the blades. Since cracks initiate very readily, the fatigue life of the components is mainly controlled by the propagation of the cracks in the stress gradient induced by the holes. For this purpose, displacement controlled high-temperature LCF (Low-Cycle-Fatigue) tests were performed with center hole specimens of a coarse-grained Nickel base Superalloy. The tests were stopped after a defined load drop. In addition, crack propagation tests with Double Edge Notch specimens were performed. Moreover, specimens with different hole surface finishes were investigated, which showed a detrimental effect of the hole surface roughness. In parallel, an evaluation of the LCF tests based on a fracture mechanics-based model (Madia et al., Eng. Fract. Mech., 2018) has been applied. Thereby, the specimen life is controlled by the crack propagation time until failure. Crack growth is controlled by a modified NASGRO equation accounting for large-scale yielding and a progressive build-up of crack closure. The initial crack size has been derived from the measurements of defects around the borehole. A reasonable agreement between predicted and measured lifetimes is observed if one keeps in mind the large uncertainty regarding the effective shape of the cracks. T2 - 23rd European Conference on Fracture CY - Funchal, Madeira, Portugal DA - 27.06.2022 KW - Nickel-base superalloys KW - Notches KW - LCF PY - 2022 AN - OPUS4-55338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Pedragosa-Rincon, M. A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Environmental Stress Cracking of High-Density Polyethylene Applying Linear Elastic Fracture Mechanics N2 - The crack propagation rate of environmental stress cracking was studied on high-density polyethylene compact tension specimens under static loading. Selected environmental liquids are distilled water, 2 wt% aqueous Arkopal N100 solution, and two model liquid mixtures, one based on solvents and one on detergents, representing stress cracking test liquids for commercial crop protection products. The different surface tensions and solubilities, which affect the energetic facilitation of void nucleation and craze development, are studied. Crack growth in surface-active media is strongly accelerated as the solvents induce plasticization, followed by strong blunting significantly retarding both crack initiation and crack propagation. The crack propagation rate for static load as a function of the stress intensity factor within all environments is found to follow the Paris–Erdogan law. Scanning electron micrographs of the fracture surface highlight more pronounced structures with both extensive degrees of plasticization and reduced crack propagation rate, addressing the distinct creep behavior of fibrils. Additionally, the limitations of linear elastic fracture mechanisms for visco-elastic polymers exposed to environmental liquids are discussed. KW - Crack propagation KW - Environmental stress cracking KW - Fracture toughness KW - Crop protection products KW - High-density polyethylene KW - Craze–crack mechanism KW - Linear elastic fracture mechanics KW - Stress intensity factor PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550476 SN - 2073-4360 VL - 14 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-55047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550052 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit T1 - Radii of S-phase Al2CuMg in Al-alloy EN AW 2618A after different aging times at 190°C N2 - The dataset contains data from quantitative microstructural analysis of transmission electron microscopy (TEM) studies of the S-phase (Al2CuMg) radii in Al-alloy EN AW 2618A. The investigated material and the applied methods were described in detail in two publications. KW - Aluminium alloy KW - EN AW 2618A a KW - S-phase KW - Al2CuMg KW - Aging KW - Creep KW - Radii distribution KW - TEM PY - 2022 UR - https://doi.org/10.5281/zenodo.6659461 UR - https://doi.org/10.5281/zenodo.7625259 U6 - https://doi.org/10.5281/zenodo.6659460 PB - Zenodo CY - Geneva AN - OPUS4-55067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Gezeigt werden die Validierung sowie ein Beispiel zur regelmäßigen Verifizierung des Verfahrens. Nach Beispielen und Vergleichen zu Ergebnissen mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Seminar Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 09.05.2022 KW - Nano powder KW - Cetrifugal Liquid Sedimentation CLS KW - Particle size determination PY - 2022 AN - OPUS4-54863 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Final report proficiency test LS BAM-5.5-2021: Measurement of the particle size distribution of ceramic powders by laser diffraction in accordance with ISO 13320 N2 - This is the final report on the proficiency test (PT) „Measurement of the particle size distribution of ceramic powders by laser diffraction”. The PT was organized by the Federal Institute for Materials Research and Testing (BAM), division 5.5 “Advanced technical ceramics”. The measurements took place from 12/2021 to 03/2022. The aim of the interlaboratory comparison was the proficiency assessment of the participating laboratories. Management and realization of PT were performed in accordance with DIN EN ISO/IEC 17043:2010. The basis of the harmonized measuring procedure and the instructions for the interlaboratory comparison was the standard ISO 13320:2020. The statistical analysis was performed in accordance with DIN ISO 13528:2020 by use of the software PROLab Plus (QuoData GmbH, Dresden, Germany). A group of 44 laboratories from 17 countries participated in the PT. Laser diffraction analyzers produced by 7 different manufacturers were used. The three test materials were commercial products. Overall, the measured characteristic values of the particle distributions (d10, d50 and d90) were in the size range between 0.5 and 25 μm. The final report contains all individual results in an anonymous way. KW - Proficiency test KW - Particle size KW - Laser light scattering PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548640 SP - 1 EP - 33 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Maaß, Robert A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data N2 - We present an easy-to-apply method to predict structural trends in the internal nucleation tendency of oxide glasses. The approach is based on calculated crystal fracture surface energies derived from easily accessible diatomic bond energy and crystal lattice data. The applicability of the method is demonstrated on literature nucleation data for isochemically crystallizing oxide glasses. KW - Glass KW - Nucleation tendency KW - Fracture surface energy KW - Crystal lattice KW - Bond energy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548814 SN - 2590-1591 VL - 14 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-54881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Aluminium High Temperature Fatigue N2 - The studied aluminium alloy is EN AW-2618A (2618A). It is very widely used for exhaust gas turbo-charger compressor wheels. Due to long operating times, high cycle fatigue (HCF) and material aging under the influence of temperatures up to 230 °C is particularly relevant for the wheels. The wheels are typically milled from round wrought blanks. From such round blanks, different testpieces are extracted and a comprehensive series of HCF tests is conducted at room temperature. The tests investigate the materials fatigue performance in the T61 state for two load-ratios, namely R = -1 and R = 0.1. Additionally, two overaged material states are tested, accounting for the aging process the material undergoes during long operating times at high temperatures. The experimental results are evaluated and compared to each other. Furthermore, the design process of notched specimens is presented. With the notched specimens, it is aimed to quantify the notch sensitivity of the material. Relating thereto, two potential model parameters for the fatigue lifetime model are introduced. T2 - FVV Frühjahrstagung 2022 CY - Würzburg, Germany DA - 31.03.2022 KW - High Cycle Fatigue KW - Aluminium Alloy KW - EN AW-2618A PY - 2022 AN - OPUS4-54886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -