TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Gezeigt werden die Validierung sowie ein Beispiel zur regelmäßigen Verifizierung des Verfahrens. Nach Beispielen und Vergleichen zu Ergebnissen mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Seminar Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 09.05.2022 KW - Nano powder KW - Cetrifugal Liquid Sedimentation CLS KW - Particle size determination PY - 2022 AN - OPUS4-54863 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Wilbig, Janka A1 - Müller, Ralf A1 - Nawaz, Q. A1 - Boccaccini, A.R. T1 - 3D printing of crystallizing bioactive glasses N2 - Artificial bone replacement by individual customized three-dimensional resorbable bioactive glass has not yet been widely established in the clinical use. This is mainly due to the antagonism of sintering ability and suitable bioactivity. Competitive crystallization often prevents the generation of dense sintered bodies, especially for additive manufactured 3D structures. Previous studies of the fluoride-containing glass F3 have shown its potential to combine both sintering ability and suitable bioactivity. Furthermore, the occurring sintering blockade by surface crystallization of Na2CaSi2O6 was tunable by glass particle size. In this study the glasses F3, F3-Cu with 1 mol% CuO added at the expense of CaO and the well-known 13-93 were chosen to determine the influence of surface crystallization on 3D printed sinter bodies. For this purpose, grain size fractions in range of smaller 32 µm to 315 µm in fraction size of 6-20 µm were sieved from jaw crushed glass frit as well as glass cubes were cut from casted blocks for all glasses. Sintering behavior of both pressed and printed powder compacts was observed via heating microscopy. Crystallization was determined by DTA and crystallization progress was monitored on fractured sinter bodies and polished cubes via electron and laser scanning microscopy as well as with diffractometry. Depending on grain size the formation of crystalline support framework along former grain boundaries shows the capability to stabilize fully densified sinter bodies before softening. Beside of this, the generation of complex hierarchic porosity was possible as well. T2 - ICG Berlin 2022 CY - Berlin, Germany DA - 03.07.2022 KW - Bioactive Glass KW - Crystallization KW - Sintering KW - 3D printing PY - 2022 AN - OPUS4-55253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Rabe, Torsten T1 - Optimized spray granules for dry pressing by means of slurry destabilization and ultrasonic atomization N2 - The homogeneous introduction of organic additives is a prerequisite for good processability of ceramic powders during dry pressing. The addition of organic additives by wet route via ceramic slurries offers advantages over dry processing. The organic content can be reduced and a more homogeneous distribution of the additives on the particle surface is achieved. In addition to the measurements of zeta potential and viscosity, sedimentation analysis by optical centrifugation was also tested and successfully used to characterize the ceramic slurries and accurately evaluate of the suitability of different types, amounts, and compositions of organic additives. Spray drying of well-stabilized slurries usually results in mostly hollow granules with a hard shell leading to sintered bodies with defects and reduced strength and density. By purposefully degrading the slurry stability after dispersion of the ceramic powder, the drying behavior of the granules in the spray drying process and thus the granule properties can be influenced. Destabilization of the slurry and thus partial flocculation was quantified by optical centrifugation. Spray drying of the destabilized alumina slurries resulted in "non-hollow" granules without the detrimental hard shell and thus improved granule properties. Further improvement of the granules was achieved by installing ultrasonic atomization in the spray dryer. A narrower granule size distribution was achieved, which had a positive effect on, among other things, the flowability of the granules. Specimens produced from this granules had fewer defects of smaller size, leading to better results for the density and strength of the sintered bodies. The observations made for alumina could be transferred to zirconia and as well to ZTA with 20 wt% zirconia. T2 - Ceramics in Europe 2022 CY - Krakau, Poland DA - 10.07.2022 KW - Ultrasound KW - Spray drying KW - Slurry PY - 2022 AN - OPUS4-56171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Oxidkeramische Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Thermoelektrische Effekte beschreiben die direkte Verknüpfung von thermischer Energie und elektrischer Energie in Festkörpern. Durch Thermodiffusionsströme entsteht direkt, ohne beweg¬liche Teile, ein elektrisches Feld als Folge einer Temperaturdifferenz. Diese Material-eigenschaft wird durch den Seebeckkoeffizienten beschrieben. Je nach Art der Ladungs¬träger sind die indu¬zierte Spannung und der Seebeckkoeffizient positiv (p-Typ) oder negativ (n-Typ). Thermo¬elek¬trische Effekte lassen sich beispielsweise in Thermo¬elementen zur Temperatur-messung, in Pel¬tierelementen zum Kühlen oder Heizen und in thermo¬elektrischen Generatoren zur Umwandlung von thermischer Energie in elektrische Energie nutzen. In thermoelektrischen Generatoren werden Schenkel aus p-Typ- und n-Typ-Materialien elek-trisch in Reihe und thermisch parallel verschaltet. Konventionell werden einzelne Schenkel aus Bismut¬tellurid auf ein metallisiertes Substrat gelötet. Man spricht vom π-Typ-Design. Aufgrund auf¬wendiger Fertigung und nicht optimaler Flächennutzung stellt dieses Design nicht die best-mög¬liche Lösung dar. Neben Telluriden gibt es noch andere vielversprechende thermoelektrische Material¬systeme wie die oxidischen Thermoelektrika. Im Temperatur¬bereich oberhalb von 700 °C können oxidische thermoelektrische Materialien mit nichtoxidischen konkurrieren. Zudem sind sie oxidationsbeständig und können aus weniger toxischen und besser verfügbaren Rohstoffen her¬ge¬stellt werden. Da es sich um keramische Materialien handelt, können unter Nutzung der Multi¬layer¬technologie (auch Vielschicht- oder Mehrlagentechnik) Generatoren im Multilayer¬design hergestellt werden. Keramische Multi¬layer¬generatoren sind aufgrund der höheren Leis¬tungs¬dichte, der Möglichkeit der gezielten Texturierung und des hohen möglichen Auto¬mati¬sierungs¬grades des Herstellungs¬prozesses eine viel¬versprechende Alternative zu konven¬tionellen π-Typ-Generatoren. Alle Lagen werden in einem Schritt co-gesintert. Die beiden zum jetzigen Zeit¬punkt wohl viel¬versprechendsten oxi¬dischen Thermoelektrika sind Calcium-cobaltit Ca3Co4O9 als p-Typ und Calciummanganat CaMnO3 als n-Typ. Die Sinter¬tem¬peratur von Ca3Co4O9 ist durch eine Phasenumwandlung bei 926 °C beschränkt. Texturiertes, dichtes Ca3Co4O9 mit einer hohen Festigkeit kann nur über Hei߬pressen hergestellt werden. Das Co-Sintern von Ca3Co4O9 und CaMnO3 war wegen der Tem¬pera¬tur¬differenz von 350 K zwischen den jeweiligen Sinterintervallen bisher nicht möglich. Ziel dieser Arbeit war deshalb die Ent¬wick¬lung von kompatiblen oxidkeramischen Werkstoffen und Folien für thermoelektrische Multilayer-generatoren auf der Basis von Ca3Co4O9 und CaMnO3. Daraus resultieren vier wesentliche Arbeitspakete. Zunächst die Materialentwicklungen von Ca3Co4O9 (p-Typ) und CaMnO3 (n-Typ) für ein Co-Sintern bei 900 °C mit akzeptablen thermoelek¬trischen Eigenschaften, dann die Entwicklung der weiteren im Generator benötigten Kompo¬nenten wie der Isolationsschicht und abschließend die Fertigung und Bewertung von Demonstra¬toren im Multi¬layer¬design. Foliengießen und druckunterstütztes Sintern ermöglichen die Herstellung von dichtem, tex-turier¬tem Ca3Co4O9 mit hoher Festigkeit und hohem Leistungsfaktor. Letzterer ist das Produkt der elek¬trischen Leitfähigkeit und dem Quadrat des Seebeckkoeffizienten. Für die elektrische Leit¬fähigkeit zeigte sich in dieser Arbeit ein kombinierter Einfluss von Sinterdichte und Textur. Die thermo¬elektrischen Eigen¬schaften lassen sich somit über die Einstellung der Mikrostruktur gezielt steuern. Durch die Optimierung der Pulversynthese, die Einführung des Sinteradditives CuO und die Kombi¬nation mit dem druckunterstützten Sintern (7,5 MPa) konnte die Sintertemperatur des CaMnO3 bei gleichbleibendem Leistungsfaktor von 1250 °C auf 950 °C gesenkt werden. Druck-unter¬stütztes Sintern von CaMnO3 ist bei 900 °C möglich, führt aber zu einem Werkstoff mit geringerem Leistungsfaktor, geringerer Dichte und ungenügender Festigkeit. Zur elektrischen Isolation der beiden thermoelektrischen Materialien wurde ein Glas-Keramik-Kompo¬sit mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungs¬koef¬fizienten ent¬wickelt. Aus den zu Folien vergossenen thermoelektrischen Materialien, der siebgedruckten Iso¬lations-schicht und der siebgedruckten Metallisierung wurden mittels Multilayertech¬nologie De¬mons-tratoren hergestellt. Neben dem pn-Generator aus Ca3Co4O9 und CaMnO3 wurden auch Unileg-generatoren aus Ca3Co4O9 gefertigt. Bei Unileggeneratoren wird die Komplexität des Aufbaus durch die Verwendung von nur einem thermoelektrischen Material verringert. Die Simulation der Demonstratoren zeigte, dass der pn-Generator aus Ca3Co4O9 und CaMnO3 keine höheren Leis-tungsdichten erbringt als der aus nur Ca3Co4O9 bestehende Unileg¬generator. Auf¬grund des ge-ringen Leistungsfaktors und der geringen Festigkeit des bei 900 °C gesinterten CaMnO3 er¬scheint die Fertigung von pn-Multilayer¬generatoren aus Ca3Co4O9 und CaMnO3 derzeit nicht sinn¬voll. Die Unileg¬generatoren aus Ca3Co4O9 erreichen mit sehr hoher Reproduzier¬barkeit 2 mW/cm² bei einer Temperaturdifferenz von 230 K, dies entspricht 80 % der simulierten elektrischen Leistung. Es handelt sich hierbei um den ersten Machbarkeits¬nachweis zur Herstellung von Multilayer-generatoren auf Basis von texturiertem Ca3Co4O9 mit hohem thermoelektrischem Leistungsfaktor, hoher Dichte und hoher Festigkeit. Solch thermoelektrische Multilayergeneratoren könnten zukünftig Systeme mit geringen elek-trischen Leistungsanforderungen wie Sensoren autark und nachhaltig mit elektrischer Energie ver¬sorgen. T2 - Promotionskolloquium CY - Bayreuth, Germany DA - 25.04.2022 KW - Calciumcobaltit KW - Calciummanganat KW - Foliengießen KW - Sintertemperatur PY - 2022 AN - OPUS4-54726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - 3-D Druck in Schwerelosigkeit – Patentanmeldung für den Bau für Werkzeug und Ersatzteilen im Weltall N2 - Präsentation der Aktivitäten an der BAM im Bereich 3-D Druck in Schwerelosigkeit. T2 - Besuch des Deutschen Patent- und Markenamtes DPMA München CY - Berlin, Germany DA - 19.07.2022 KW - Additive manufacturing KW - Microgravity KW - Patent KW - Powder KW - Additive Fertigung KW - 3D Druck KW - Schwerelosigkeit PY - 2022 AN - OPUS4-56314 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - How will we explore, work, and live on the moon? N2 - 3D-printed landing pads on the moon: Paving the road for large area sintering of lunar regolith. A prerequisite for lunar exploration and beyond is the manufacturing of objects directly on the moon, given the extreme costs involved in the shipping of material from Earth. Looking at processes, raw materials, and energy sources, equipment will certainly have to be brought from Earth at the beginning. Available on the moon are lunar regolith as raw material and the sun as an energy source. One of the first steps towards the establishment of a lunar base is the creation of infrastructure elements, such as roads and landing pads. We’ll introduce you to the ESA-project PAVER that demonstrates the sintering and melting of lunar regolith simulant material to produce large scale 3D printed elements that could be used during human and robotic lunar explorations. T2 - Berlin Science Week CY - Online meeting DA - 09.11.2022 KW - Additive manufacturing KW - Lunar regolith simulant KW - EAC-1A KW - Space exploration PY - 2022 UR - https://www.youtube.com/watch?v=StfLuVhKkUE AN - OPUS4-56377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum N2 - Präsentation der Aktivitäten an der BAM im Bereich Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum beim Arbeitsgruppentreffen der AG Werkstoffe & Prozesse vom Netzwerk Space2Motion. T2 - Arbeitsgruppentreffen beim Netzwerk Space2Motion CY - Online meeting DA - 09.11.2022 KW - Additive Fertigung KW - Mikrogravitation PY - 2022 AN - OPUS4-56353 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Combination of layerwise slurry deposition and binder jetting (lsd-print) for the additive manufacturing of advanced ceramic materials N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the “layerwise slurry deposition” (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Shaping 8 CY - Dübendorf, Switzerland DA - 14.09.2022 KW - Additive Manufacturing KW - 3D printing KW - Ceramics PY - 2022 AN - OPUS4-56523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving KW - Solar sintering PY - 2022 AN - OPUS4-56529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute A1 - Kuchenbecker, Petra A1 - Abram, Sarah-Luise A1 - Löhmann, Oliver A1 - Mrkwitschka, Paul T1 - Tour de table - BAM N2 - Kurzübersicht über die neuen Aktivitäten zu Nanomaterialien in 2021. T2 - Nano-Behördenklausur der Bundesoberbehörden 2021 CY - Online meeting DA - 17.11.2021 KW - Nano KW - Nanomaterial KW - Nanopartikel KW - Bundesoberbehörden PY - 2021 AN - OPUS4-53827 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung thermoelektrischer Multilayergeneratoren auf der Basis von Calciumcobaltit N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. N2 - Thermoelektrische Generatoren können zum „Energy harvesting“ für den autarken Betrieb von bspw. Sensoren eingesetzt werden. Eine interessante Alternative zu den herkömmlichen π-Typ Generatoren sind auf Grund der höheren Leistungsdichte und der guten Automatisierbarkeit thermoelektrische Multilayergeneratoren. Calciumcobaltit ist ein vielsprechendes oxidisches Thermoelektrika (p-Typ) mit stark anisotropen Eigenschaften. Die hier vorgestellte Studie zeigt die Entwicklung von texturierten Unileg-Multilayer-Generatoren mittels keramischer Multilayertechnologie. Calciumcobaltit wird durch Foliengießen und druckunterstützte Sinterung texturiert. Im Vergleich zur konventionellen Sinterung verbessert sich die Festigkeit um den Faktor 10. Die thermoelektrischen Eigenschaften können je nach verwendetem Druckniveau hinsichtlich maximalem Power Factor oder hinsichtlich maximalem Gütefaktor optimiert werden. Ein Glaskeramikkomposit wird als Isolationsmaterial mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungskoeffizienten entwickelt. Der Unileg-Multilayer-Generator wird in einem Schritt co-gesintert. Die hergestellten Demonstratoren erreichen 80% der simulierten Output-Leistung. Diese Ergebnisse stellen den ersten Machbarkeitsnachweis für die Herstellung von co-gesinterten Multilayer-Generatoren aus texturiertem Calciumcobaltit mit hohem Power Factor und hoher Festigkeit dar. T2 - Seminar des Lehrstuhls für Funktionsmaterialien, Universität Bayreuth CY - Online meeting DA - 18.06.2021 KW - Thermoelektrischer Generator KW - Multilayertechnik KW - Energy harvesting PY - 2021 AN - OPUS4-52834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Additive Manufacturing of advanced ceramics by layerwise slurry deposition and binder jetting (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Layerwise slurry deposition KW - Laser induced slipcasting KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-55543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Exkurs Partikelgrößenverteilungen N2 - Einführung in die Darstellung der Ergebnisse von Partikelgrößenbestimmungen: Was ist ein Kugeläquivalenzdurchmesser; welche Bedeutung hat die gemessene Mengenart; welche Parameter werden ausgewiesen. Bezug zu Regularien hinsichtlich der Bewertung "Nano- oder nicht Nano-Material. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Nano material KW - Particle size KW - Size distribution PY - 2023 AN - OPUS4-57127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Dynamische Lichtstreuung DLS nach ISO 22412:2017 N2 - Einführung in die Partikelgrößenbestimmung von Nano-Materialien mittels Dynamischer Lichtstreuung. Normative Grundlagen (ISO 22412 und OECD TG 125); Messprinzip, Auswertealgorithmen, Informationsgehalt der Daten, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - DLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007 N2 - Einführung in die Bestimmung der Partikelgröße von Nano-Materialien mittels Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007. Normative Grundlagen (einschließlich OECD TG 125), Messprinzip, Auswertung, Vor- und Nachteile der Methode, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - CLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. A1 - Kalinka, Gerhard T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 14.04.2018 KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2018 AN - OPUS4-45098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive Manufacturing of Silicon Carbide by LSD-print N2 - The layerwise slurry deposition (LSD) has been established in the recent years as a method for the deposition of ceramic powder layers. The LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade; each layer is sequentially deposited and dried to achieve a highly packed powder layer. The combination of binder jetting and LSD was introduced as a novel technology named LSD-print. The LSD-print takes advantage of the speed of binder jetting to print large areas, parallel to the flexibility of the LSD, which allows the deposition of highly packed powder layers with a variety of ceramic materials. The working principle and history of the LSD technology will be shortly discussed. A theoretical background will be also discussed, highlighting advantages and drawbacks of the LSD compared to the deposition of a dry powder. The last part of the talk will be dedicated to highlight recent results on the LSD-print of SiSiC of geometrically complex components, in collaboration between BAM and HC Starck Ceramics GmbH. Density, microstructure and mechanical properties of LSD-printed and isostatic pressed samples will be discussed and compared. T2 - XVI ECerS CONFERENCE CY - Torino, Italy DA - 16.06.2019 KW - Additive Manufacturing KW - Silicon Carbide KW - 3D printing KW - Layerwise Slurry Deposition PY - 2019 AN - OPUS4-49220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Lima, P. A1 - Günster, Jens A1 - Lüchtenborg, Jörg T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. T2 - Smart Made CY - Osaka, Japan DA - 01.09.2019 KW - Additive Manufacturing KW - Ceramic KW - Powder KW - Layerwise slurry deposition KW - 3D printing PY - 2019 AN - OPUS4-49221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Kalinka, Gerhard T1 - Deformation behavior of alumina and zirconia springs at room temperature N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic springs and allow for innovative solutions. A recently proposed application involves ceramic springs with metallized surfaces as capacitive force sensor. A strictly linear stress-strain characteristic of the spring is a precondition for such a sensor. Helical ceramic springs with rectangular cross-section have been produced from sintered hollow cylinders. Alumina, ATZ, Y-TZP, and Ce-TZP springs with identical dimensions were characterized and compared regarding deformation behavior. Spring deformation was investigated under various load scenarios. Dynamic compression was performed with deformation speeds from 0.3 to 30 mm/min. Spring constants of alumina springs are strain rate independent. By contrast, Y-TZP spring constant increases by approximately 3 % within the experimental framework. A high-precision test facility was developed to characterize spring displacement in nm range under static tensile load over long periods of time. Spring elongation with asymptotic course was observed for zirconia containing materials at room temperature. This effect is particularly strong in the case of Y-TZP. Up to 0.3 % time-dependent elongation was measured after 24 h under constant load. Deformation is completely reversible after unloading. Alumina springs do not show any time-dependent deformation under identical test conditions. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs at room temperature was proved in both test series. It is supposed, that pseudo-elasticity caused by stress-induced phase transformation from tetragonal to monoclinic is responsible for this special behavior of TZP springs. T2 - D-A-CH Keramiktagung CY - Leoben, Austria DA - 06.05.2019 KW - Phase transformation KW - Ceramic spring KW - Force-distance diagram KW - Deformation behavior PY - 2019 AN - OPUS4-48026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Praktische Erfahrungen zur Granulometrie von Pulvern im Submikron- und Nanobereich N2 - Der Vortrag beleuchtet insbesondere die Herausforderungen die sich bei der Dispergierung der Nanopulver aufgrund der hohen Adhäsivkräfte ergeben. Die Bewertung der Probenpräparation ist nur indirekt zugänglich, aber essentiell für die Zuverlässigkeit der Messergebnisse. Anhand von Beispielen werden Lösungsvorschläge aufgezeigt. Der Vortrag schließt mit einem Vorschlag zur Strategie der Herangehensweise bei der Partikelgrößenbestimmung von Nanopulvern. T2 - Sitzung des Fachausschusses "Material- und Prozessdiagnostik" der Deutschen Keramischen Gesellschaft: Zuverlässige granulometrische Charakterisierung von Mikro- und Nanopulvern – Voraussetzung für optimierte Keramikwerkstoffe in der Energietechnik CY - Online meeting DA - 19.11.2020 KW - Nano-powder KW - particle size determination KW - dispersion KW - sample preparation PY - 2020 AN - OPUS4-51665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, N. K. A1 - Milkin, P. V. A1 - Evdokimov, P. A. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Sintering of sodium and potassium tcp based ceramic for bone grafting application N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductive and osteoinductive properties. However, resorption of modern materials for bone grafting (hydroxyapatite (HA) and tricalcium phosphate (TCP)) is reported, in some cases, to be not enough, this is why the search for more soluble compounds compared to HA and TCP looks very perspective. A possible way to increase ceramics solubility leads to partial substitution of Ca2+ -ions in Ca3(PO4)2 by alkali cations, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as the increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in the sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making the study of sintering of the ceramics mentioned above highly important. To control Ca3(PO4)2 - CaKPO4 - CaNaPO4 based ceramic microstructure it is necessary to know possible phase transformations in the system and the way to manage microstructure by sintering schedule or sintering process. In this work, an isothermal section for phase diagram of Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system is studied with several techniques. According to the XRD of quenched samples, this phase triangle has four single-phase areas at 1200˚C (Figure 1). It was shown that single-phase CaK0.6Na0.4PO4 cannot be sintered to full-dense ceramics by conventional sintering regardless time-temperature schedule. Two-step sintering technique, beneficial in the case of HA-ceramics, was unsuccessful in all cases of calcium-alkali phosphate compositions. However, field-assisted sintering techniques like, e.g. Spark Plasma Sintering (SPS), can overcome this problem due to significant impact on grain boundary diffusion. In connection with this fact, grains grow much slower retaining sintering process in a pore control regime. In this work CaK0.6Na0.4PO4 low-porous ceramics was also fabricated by FAST-methods of sintering. Moreover, other alternative sintering techniques, such as reaction sintering, may be useful in accelerating ions diffusion but stopping excessive grain growth.Strength properties of ceramics were evaluated by B3B-testing, micro- and nanoindentation techniques. Fracture toughness also becomes higher with potassium content increase, guiding porosity level. Resorption properties of sintered ceramics were studied in different solutions with pH=5 and 7.4. Acknowledgements. The research of sintering processes in calcium phosphate materials were funded by RFBR according to the research project № 18-33-00974. T2 - XVI ECerS Conference 2019 CY - Turin, Italy DA - 16.06.2019 KW - Phase transformations KW - Bioceramics KW - Mixed Ca-K-Na phosphates KW - Na and K rhenanites KW - Phase diagram PY - 2019 AN - OPUS4-49622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Alternative Verfahren zur Strukturierung von Grünfolien und Laminaten N2 - Die Strukturierung keramischer Grünfolien und Laminate ist ein wesentlicher Prozessschritt in der keramischen Multilayer-Technologie und begründet die funktionelle Vielfalt keramischer Multilayer. Benötigt wird die Grünbearbeitung für die Herstellung elektrischer und thermischer Vias sowie innerer Kavitäten und Kanäle für Transport und Lagerung von Gasen und Flüssigkeiten in hochintegrierten Schaltungsträgern, Sensoren und Reaktoren. Standardverfahren in der industriellen Fertigung sind Heißschneiden, Stanzen und Laserbearbeitung. Darüber hinaus werden auch Bohren, Fräsen, Sägen und Heißprägen verwendet. Über die Erprobung weiterer Verfahren wie Wasserstrahlschneiden, Dampfstrahlätzen und Powder Blasting wird in der Literatur berichtet. Im Vortrag werden spezifische Vor- und Nachteile der eingesetzten Verfahren beleuchtet. Abschließend werden die Kriterien für die Auswahl des optimalen Strukturierungsverfahrens diskutiert. Zusammensetzung und Gefüge sowie die dadurch bedingten mechanischen und thermomechanischen Eigenschaften sowie das Absorptionsverhalten von Grünfolien sind sehr unterschiedlich. Daraus resultieren unterschiedliche optimale Bearbeitbarkeitsparameter. T2 - DKG-Seminar "Foliengieß- und Schlitzdüsenverfahen" CY - Hermsdorf, Germany DA - 05.11.2019 KW - Stanzen KW - Keramische Folien KW - Laserbearbeitung KW - Grünfolieneigenschaften PY - 2019 AN - OPUS4-49742 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Modeling of the cooling behavior of thermoelectric multilayers N2 - Multilayered designs are an attractive approach towards cost-effective manufacturing of thermoelectric generators. Therefore, efforts are being made to co-fire two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, ceramic tapes, multilayer technology, and pressure-assisted sintering (PAS) were used. A major challenge for the PAS of low-sintered calcium manganate was cracking during cooling. A relationship between the properties of the release tape used during PAS and the cracking behavior was experimentally observed. To understand the origin of failure, reaction layers in the multilayer were analyzed and thermal stresses during cooling were estimated by finite element (FE) simulations. Thermal expansion, elastic properties, and biaxial strength of the thermoelectric oxides and selected reaction layers were determined on separately prepared bulk samples. The analysis showed that the reaction layers were not the cause for cracking of calcium manganate. Using the FE model, thermal stresses in different manganate multilayer designs with varying properties of the release tape were studied. The FEM study indicated, and a validation experiment proved that the thickness of the release tape has the main effect on thermal stresses during cooling in separately sintered calcium manganate. T2 - Keramik 2021 / Ceramics 2021 CY - Online Meeting DA - 19.04.2021 KW - Fem KW - Thermoelectric KW - Pressure assisted sintering PY - 2021 AN - OPUS4-52489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Sample Preparation of Nano-Powders for Particle Size Determination N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. T2 - 96. Jahrestagung der Deutschen Keramischen Gesellschaft CY - Online Meeting DA - 19.04.2021 KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 AN - OPUS4-52503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Einfluss der Pulversynthese auf die Eigenschaften thermoelektrischer Oxide N2 - Calciumcobaltit und Calciummanganat gehören zu den vielversprechendsten thermoelektrischen Oxiden im Temperaturbereich zwischen 600 °C und 800 °C an Luft. Mittels thermoelektrischer Generatoren kann ein Temperaturgradient direkt in elektrische Leistung umgewandelt werden. Für die kostengünstige Pulverherstellung von Funktionsmaterialien wird im industriellen Maßstab meist die Festphasenreaktion (bzw. Kalzinierung) verwendet. Da es sich dabei um einen Hochtemperaturprozess handelt, ist diese Kalzinierung sehr energieintensiv. In der Literatur werden sehr unterschiedliche Prozessbedingungen zur Pulversynthese thermoelektrischer Oxide genutzt. Soweit dem Autor bekannt, ist keine systematische Untersuchung des Einflusses der Pulversynthesebedingungen auf die thermoelektrischen Eigenschaften publiziert. Deshalb wurde eine systematische Untersuchung des Einflusses der Pulversynthesebedingungen (Temperatur, Haltezeit, Partikelgröße, Wiederholungen) auf die thermoelektrischen Eigenschaften von Calciumcobaltit und Calciummanganat durchgeführt. Es konnte gezeigt werden, dass sich ein höherer Energieeintrag während der Kalzinierung negativ auf die thermoelektrischen Eigenschaften auswirkt. T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 12.01.2018 KW - Kalzinierung KW - Thermoelektrika KW - Calciummanganat KW - Calciumcobaltit PY - 2018 AN - OPUS4-43772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Weiterentwicklung der VSSA-Screening-Methode zur Identifizierung von NanoPulvern N2 - Der Vortrag zeigt zwei Möglichkeiten zur Verbesserung der VSSA-Screening-Methode zur Identifizierung von Nanopulvern auf. Bisher ist das Verfahren nur für monodisperse Partikel mit idealer Kugelform valide. Die Verteilungsbreite der Partikelgröße soll durch die Nutzung des Modells einer logarithmischen Normalverteilung implementiert werden. Die Abweichung der gemessenen Partikel von einer idealen Kugel in Sphärizität, Rundheit und Rauigkeit sind über einen Morphologiefaktor MF zu berücksichtigen. An einem konkreten Beispiel werden Auswirkungen der Implementierungen rechnerisch dargestellt und mit dem bisherigen Verfahren verglichen. T2 - NanoDefine Follow-up Meeting CY - Frankfurt/ Main, Germany DA - 25.09.2018 KW - VSSA KW - Nano particle KW - Particle size KW - Nano screening PY - 2018 AN - OPUS4-46070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - CIMTEC 2018 14th Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Additive Manufacturing PY - 2018 AN - OPUS4-45781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of dense ceramics with laser induced slip casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - yCAM (Young Ceramists Additive Manufacturing Forum) CY - Padua, Italy DA - 03.05.2018 KW - Additive manufacturing PY - 2018 AN - OPUS4-45782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Hollesch, Martin A1 - Börner, Andreas T1 - Keramikfedern – Herstellung, Eigenschaften und Applikation N2 - Entwickelt wurde eine mehrstufige Fertigungstechnologie (Schruppen, Schlichten, Trennschnitt) zur Herstellung keramischer Federn aus gesinterten Hohlzylindern. Durch Optimierung von Maschinenparametern, Schleifscheiben sowie Werkstück- und Werkzeugaufnahmen ist es gelungen, Federn aus Hochleistungskeramik (Aluminiumoxid und Zirkonoxid) mit hoher Kanten- und Oberflächenqualität reproduzierbar herzustellen. Eine hohe Variabilität bezüglich Außen- und Innendurchmesser, Steigung, Windungsquerschnitt und Abstand zwischen den Windungen ermöglicht es, die Federkonstante über drei Größenordnungen zu variieren. Untersucht wurden Federstabilität und Spannungs-Dehnungs-Verhalten unter konstanter und zyklischer Druckbelastung sowie die thermomechanische Stabilität der Keramikfedern. Aluminiumoxid-Federn können bis etwa 800°C, Zirkonoxid-Federn bis etwa 600°C ohne bleibende geometrische Verformung eingesetzt werden. Unter konstanter Spannung zeigen Federn aus Y-stabilisiertem TZP (Zirkonoxid)-Werkstoffen, von anderen Keramikwerkstoffen abweichend, bei Raumtemperatur eine zeitabhängige, elastische, Verformung (Superelastizität), die nach Entlastung über einen Zeitraum von mehreren Stunden reversibel verläuft. Als Ursache wird eine spannungsinduzierte reversible Phasenumwandlung zwischen austenitischer (tetragonales ZrO2) und martensitischer (monoklines ZrO2) Phase postuliert. Diskutiert wird das Anwendungspotenzial der entwickelten Federn für kapazitive keramische Federsensoren für Gravimeter und Wägetechnik. T2 - AK-Sitzung "Keramikbearbeitung" des Fraunhofer IPK CY - Berlin, Germany DA - 27.09.2018 KW - Keramikfeder KW - Spannungs-Dehnungs-Verhalten KW - Zyklische Belastung KW - Thermomechanische Eigenschaften KW - Fertigungstechnologie PY - 2018 AN - OPUS4-46231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Mühler, T. A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - Additive manufacturing of geopolymers by local laser curing N2 - For the additive manufacturing of large components typically powder-based methods are used. A powder is deposited layer by layer by means of a recoater, then, the component structure is printed into each individual layer. We introduce here the new method of local laser drying, which is a suspension-based method specially developed for the manufacturing of large voluminous ceramic parts. The structure information is directly written into the freshly deposited layer of suspension by laser drying. Initially, the technology was developed for ceramic suspensions, however, first experiments with geopolymers reveal a high potential for this class of materials. Metakaolin, fly ash and lithium aluminate-based one-part geopolymers were used in first experiments. The local annealing of the geopolymer slurry results in a drying and crosslinking reaction and, thus, in a local consolidation of the material. First parts made are introduced and their properties are discussed. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Additive manufacturing KW - Laser curing KW - Geopolymers PY - 2018 AN - OPUS4-47447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Diener, S. A1 - Lima, P. A1 - Katsikis, N. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - In powder bed Additive Manufacturing (AM) technologies, a part is produced by depositing and piling up thin powder layers. In each layer, the cross section of the object to build is defined by locally consolidating the powder, by sintering/melting the material (powder bed fusion technologies) or by ink jetting a binder (binder jetting technologies). These are already leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been challenging so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer. The LSD offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and enables the production of parts with physical and mechanical properties comparable to pressed or slip-casted parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - ICACC 2019 - 43rd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise KW - Slurry PY - 2019 AN - OPUS4-47865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, P. A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Günster, Jens T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. Another technology, the Gas Flow Assisted Powder Deposition, can increase the stability of the powder bed and the packing density, even in extreme conditions such as in absence of gravitational forces. T2 - yCAM 2019 - young Ceramists Additive Manufacturing Forum CY - Mons, Belgium DA - 03.04.2019 KW - Additive Manufacturing KW - Flowability KW - Ceramic KW - Powder PY - 2019 AN - OPUS4-47867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -