TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extractions methods N2 - A new and full automated system for the analysis of microplastics in environmental samples is presented. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Mikroplastik KW - TED KW - Thermal degradation PY - 2018 AN - OPUS4-44179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Dümichen, Erik A1 - Braun, Ulrike T1 - Kunststoffgehalte schnell bestimmen mit der TED-GC-MS N2 - Der Vortrag behandelt die Analyse von Kunststoffen in Umweltproben mit dem thermischen Verfahren TED-GC-MS. Das Verfahren und dessen Funktionsweise werden vorgestellt, erfolgte Optimierungen, Verfahrenskenndaten sowie Möglichkeiten der Quantifizierung behandelt. T2 - Projektübergreifendes Mikroplastikseminar BASEMAN, BONUS MICROPOLL, MiWa CY - Berlin, Germany DA - 16.10.2017 KW - Mikroplastik KW - Analyse KW - TED-GC-MS PY - 2018 AN - OPUS4-43927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extraction methods N2 - The presentation presents an overview about existing methods of microplastic detection with a special focus on thermo-analytical methods. T2 - Perkin Elmer Workshop Microplastics CY - Vienna, Austria DA - 11.01.2018 KW - Microplastics KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-43803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Bresch, Sophie A1 - Marucha, P. A1 - Moos, R. A1 - Rabe, Torsten T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. A1 - Kalinka, Gerhard T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Analytik von Mikroplastik mittels TED-GC-MS N2 - Der Vortrag stellt spektroskopische und neue thermoanalytische Verfahren zum Nachweis von Mikroplastik dar. Ein spezieller Focus ist auf der Anwendung edr Verfahren für terrestrische Proben. T2 - Fachgespräch Feststoffuntersuchungen 2018 CY - Essen Werden, Germany DA - 05.03.2018 KW - Mikroplastik KW - Analytik KW - GC-MS KW - Thermische Analyse PY - 2018 AN - OPUS4-44525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Prüfung von Rotorblattschalen mit Luftultraschall N2 - Um den sicheren Betrieb von Windkraftanlagen zu gewährleisten, werden Rotorblätter nach der Fertigung und nach Reparatur mit verschiedenen zerstörungsfreien Verfahren auf Schaden untersucht. Bei der Fertigung von Blattschalen, die in einer Sandwich-Schalenbauweise gefertigt werden, entstehen Imperfektionen, die unter Belastung zu großen Rissen führen können. Zur Prüfung von Blattschalen wird unter anderem Ultraschallprüfung in Kontakttechnik eingesetzt. Um den Wartungsaufwand von Ultraschallanlagen zu reduzieren und um manche Kompositstrukturen vor Koppelmittel zu schützen, wird die Anwendung von Luftultraschall erforscht. Insbesondere große Fortschritte gibt es im Bereich der Entwicklung neuer Wandler. In diesem Beitrag berichten wir über die Luftultraschallprüfung von Schalen für Rotorblätter. Es wurden typische Sandwichschalenstrukturen hergestellt und mit einem eigenentwickelten Schalenprüfstand unter simulierter Betriebsbeanspruchung belastet. Die in den Schalenprüfkörpern entstandenen Schäden wurden außerhalb des Prüfstandes mit Luftultraschall in Durchschallung untersucht. Es wurden fokussierende Wandler auf Basis von Ferroelektreten entwickelt und für diese Prüfungen eingesetzt. Mit zusätzlicher elektrischer Vorspannung konnte die Empfindlichkeit der Empfänger deutlich erhöht werden. Die nach dem Lastwechsel entstandenen Schäden in den Rotorblattschalen waren eindeutig zu detektieren. T2 - DGZfP-Jahrestagung CY - Leipzig, Germany DA - 07.05.2018 KW - Wandler KW - Rotorblattschalen KW - Luftultraschall KW - Ferroelektret PY - 2018 AN - OPUS4-45307 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European Conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 AN - OPUS4-45438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Niedrigsinterndes CaMnO3 für thermoelektrische Anwendungen N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. N2 - Thermoelektrische Materialien können durch die Nutzung des Seebeckeffektes einen Temperaturunterschied direkt in eine Spannung umwandeln. Calciumcobaltit (p-typ) und Calciummanagant (n-typ) sind 2 der vielversprechendsten oxidischen thermoelektrischen Materialien. Für die Entwicklung von kostengünstigen Multilayergeneratoren ist das Co-sintern dieser beiden Materialien notwendig und deshalb eine Anpassung der Sintertemperatur nötig. Calciummangant wird herkömmlicherweise zwischen 1200°C und 1350°C gesintert. Calciumcobaltit erfährt einen ungewünschte Phasenumwandlung bei 926°C, es kann allerding bei 900°C unter 7.5MPa zu 95% dicht gesintert werden. Demzufolge, ist eine Co-sintertemperatur von 900°C anzustreben. Aus diesem Grund wurden mehrere Strategien zur Absenkung der Sintertemperatur von Calciummanaganat untersucht. Zum einen die Zugabe niedrigschmelzender Additive, zum anderen die Zugabe von Additiven, die eine eutektische Schmelze bilden. Es konnte gezeigt werden, dass für Calciummanganat die Verwendung von eutektischen Schmelzen besser geeignet ist als die Verwendung von niedrigschmelzenden Additiven um die Sintertemperatur zu senken.“ T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 22.06.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-45281 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - Results of the in vestigation of the "Long term ageing of alloy 2618A" were presented. T2 - ICAA 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 AN - OPUS4-45288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Schriever, Sina A1 - Augenstein, E. A1 - Karlin, J. A1 - Piesker, Benjamin A1 - Schweizer, C. A1 - Skrotzki, Birgit T1 - Lifetime Assessment of Aluminium radial compressor wheels considering material ageing N2 - The results of the project "Lifetime Assessment of Aluminium radial compressor wheels considering material ageing" were presented. T2 - FVV Frühjahrstagung 2018 CY - Bad Neuenahr, Germany DA - 22.03.2018 KW - Alloy 2618A KW - Degradation KW - S-phase KW - Dark-field transmission electron microscopy KW - Aluminum PY - 2018 AN - OPUS4-44706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Influence of testing conditions on dielectric strength of alumina N2 - Dielectric strength testing of ceramics is simple and yet challenging. The execution of a breakthrough voltage measurement of a given sample is fast and straightforward. ASTM D149 describes the standardized procedure. But, there are versatile effects of test conditions and sample properties that affect the result of such a measurement. As one example, ASTM D149 allows different sizes of test electrodes and does not unambiguously prescribe the condition of the electrodes. Thus, different electrode configurations are used in the field. We conducted several test series on alumina samples to comprehensively quantify the effect of test conditions and sample properties on dielectric strength results. In our study, testing of alumina substrates using different electrode configurations resulted in differences of mean values of up to 20%. Further test series on alumina focused on the effect of voltage ramp rate. The results are complemented by calculations of failure probability at different voltage levels and corresponding withstand voltage tests. We conclude that a communication and comparison of single dielectric strength values is insufficient and may be misleading. A meaningful comparison of dielectric strength studies from different sources requires a thorough consideration of test conditions. T2 - 93rd DKG Annual Meeting CY - Munich, Germany DA - 10.04.2018 KW - Alumina KW - Dielectric strength KW - Withstand voltage tests PY - 2018 AN - OPUS4-44692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 14.04.2018 KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2018 AN - OPUS4-45098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.07.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 AN - OPUS4-50126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Einfluss der Pulversynthese auf die Eigenschaften thermoelektrischer Oxide N2 - Calciumcobaltit und Calciummanganat gehören zu den vielversprechendsten thermoelektrischen Oxiden im Temperaturbereich zwischen 600 °C und 800 °C an Luft. Mittels thermoelektrischer Generatoren kann ein Temperaturgradient direkt in elektrische Leistung umgewandelt werden. Für die kostengünstige Pulverherstellung von Funktionsmaterialien wird im industriellen Maßstab meist die Festphasenreaktion (bzw. Kalzinierung) verwendet. Da es sich dabei um einen Hochtemperaturprozess handelt, ist diese Kalzinierung sehr energieintensiv. In der Literatur werden sehr unterschiedliche Prozessbedingungen zur Pulversynthese thermoelektrischer Oxide genutzt. Soweit dem Autor bekannt, ist keine systematische Untersuchung des Einflusses der Pulversynthesebedingungen auf die thermoelektrischen Eigenschaften publiziert. Deshalb wurde eine systematische Untersuchung des Einflusses der Pulversynthesebedingungen (Temperatur, Haltezeit, Partikelgröße, Wiederholungen) auf die thermoelektrischen Eigenschaften von Calciumcobaltit und Calciummanganat durchgeführt. Es konnte gezeigt werden, dass sich ein höherer Energieeintrag während der Kalzinierung negativ auf die thermoelektrischen Eigenschaften auswirkt. T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 12.01.2018 KW - Kalzinierung KW - Thermoelektrika KW - Calciummanganat KW - Calciumcobaltit PY - 2018 AN - OPUS4-43772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Balzer, R. A1 - Kiefer, P. T1 - The influence of water as volatile on crack propagation in soda-lime silicate glass N2 - The talk was given at the Spring School of the SPP1594 in Hannover and summarizes the actual findings about crack growth in water bearing soda-lime silicate glass and a comparison to other oxide glasses. T2 - Spring School des SPP1594 CY - Hannover, Germany DA - 06.03.2018 KW - DCB KW - Soda-lime silicate glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2018 AN - OPUS4-45699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Kiefer, P. A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. A1 - Behrens, H. T1 - Wasser und Risswachstum in Silicatgläsern N2 - Die Festigkeit von Gläsern wird durch die Oberflächenqualität beeinflusst. Kommt es neben dem Auftreten von Defekten zusätzlich zum Risswachstum ausgehend hiervon, wird die Festigkeit minimiert. Das Wachstum hängt dabei maßgeblich von der Luftfeuchtigkeit ab. Dieses Ermüdungsverhalten von Gläsern besser zu verstehen und dabei die Mechanismen und den Einfluss von im Volumen eingebauten Wasser auf das unterkritische Risswachstum zu untersuchen, ist Ziel der Arbeiten. Als Teilprojekt im Rahmen des DFG Schwerpunktprogramms SPP 1594 „Ultrastrong glasses“ soll der Einfluss des im Volumen eingebauten Wassers auf die Rissspitze untersucht werden. Zusammen mit der Leibniz Universität Hannover und der TU Clausthal werden hierfür hochwasserhaltige Gläser (bis zu 8 Gew%) bei 8 kbar über die Flüssigphase synthetisiert, die makroskopisch den hohen Wasseranteil nachstellen. Die Charakterisierung erfolgt hinsichtlich des Wassereinbaus, der mechanischen Eigenschaften und des Risswachstums. Die Arbeiten in Berlin beziehen sich hierbei auf die Messungen des unterkritischen Risswachstums in Luft und Vakuum, sowie Verlustwinkelmessungen. Erste Ergebnisse zeigen Unterschiede im korrosionsbeeinflussten (langsames) und inerten (schnelles und im Vakuum stattfindendes) Risswachstumsverhalten der untersuchten Gläsern. Die Rissgeschwindigkeit beim Übergang vom korrosionsbeeinflussten zum inerten Risswachstum ist hin¬gegen für alle Gläser ähnlich und folglich ein kinetisch durch den äußeren Wassertransport an die Rissspitze bestimmter Prozess. Der Widerstand gegen Risswachstum steigt mit Tg und zusätzlich kann anhand der Verlustwinkelmessungen ein Zusammenhang zwischen der Netzwerk- und der β-Relaxation ermittelt werden. Je höher der Wassergehalt im Glas ist, desto niedriger wird Tg und einfacher das Risswachstum, welches sich durch längere Risse kennzeichnet. Besonders stark tritt dieser Effekt bei einem Überschuss an molekularem Wasser auf. T2 - 1. Fachsymposium der Glasapparatebauer CY - Munich, Germany DA - 19.04.2018 KW - Wasser KW - Risswachstum KW - Glas KW - Vickers KW - DCB PY - 2018 AN - OPUS4-45701 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Balzer, R. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Statistical analysis of subcritical crack growth in water bearing soda-lime silicate glasses N2 - The talk was given at the PNCS-ESG 2018 in Saint Malo and summarizes the actual findings about Vickers induced crack growth in water bearing soda-lime silicate glasses. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Water speciation KW - Vickers KW - Crack growth KW - Soda-lime silicate glass PY - 2018 AN - OPUS4-45707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. T1 - VACUUM HOT EXTRACTION (VHE-MS): Concentration, diffusion and degassing of volatiles N2 - Der Vortrag gibt eine Einführung in die Methode der Vakuumheißextraktion und beschreibt die Anwendungsmöglichkeiten der an der BAMN betriebenen Anlage. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.1.2018 KW - Gasabgabe KW - Diffusion KW - Gasgehalt PY - 2018 AN - OPUS4-45665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Deubener, J. A1 - Behrens, H. T1 - Wasser in Silicatglas N2 - Der Vortrag gibt einen Überblick über den Stand des Wissens zum strukturellen Einbau von Wasser in Silicat- und Boratgläsern, den Einfluss des gelösten Wassers auf deren Viskosität sowie zu den strukturellen Vorstellungen zum Wassertransport. T2 - 1. Fachsymposium der Glasapparatebauer CY - Munich, Germany DA - 19.04.2018 KW - Wasser KW - Glass KW - Struktur PY - 2018 AN - OPUS4-45669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Rotor blade PY - 2018 AN - OPUS4-46656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roohbakhshan, Farshad A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Dislocation-based modeling of high temperature deformation and fatigue in P92 ferritic-martensitic steels N2 - The employment of renewable energy resources, which are naturally intermittent, for electricity generation has altered the working conditions of conventional power plants from continuous (baseload) to cyclic or flexible operation. For a long time, 9-12% Cr ferritic-martensitic stainless steels have been widely used in power plants due to their favorable characteristics such as high creep strength at high temperatures and oxidation and corrosion resistance. The components of power plants are subjected to long term cyclic loadings including fatigue and creep-fatigue at high temperatures. As ferritic-martensitic steels are known to exhibit cyclic softening when subjected to such loading scenarios, it is crucial to study the material response in such conditions. Since it is impossible to test the material behavior exactly as the operation conditions of power plants, due to technical difficulties and cost issues, it is necessary to develop physically-based material models that can predict the material behavior in more realistic situations. In recent years, many material models have been proposed to describe the behavior of 9-12% Cr ferritic-martensitic stainless steels, which follow phenomenological or physically-based approaches. Phenomenological models provide a stress-strain relation based on empirical observations although they usually lack physical background. To alleviate this drawback and to allow for more flexibility and wider ranges of strain-rate and temperature, physically-based models are suggested. In this approach, microstructural evolution, dislocation movement and/or kinetics of plastic deformation processes are included. The physically-based models allow for a better extrapolation from the experiment results to other operation conditions and their material constants can be interpreted physically. Compared to the former approach, the material behavior can be described more accurately and flexibly and the number of material constants is less in general. In the presented work, the existing micromechanical models developed for P92 steel are compared and extended to allow for new dislocation-based strengthening/cyclic mechanisms. Their performance is assessed in the light of mechanical test data from creep-fatigue and thermo-mechanical fatigue experiments and detailed characterizations of the microstructure evolution in the fatigued material. T2 - 12th International Fatigue Congress CY - Poitiers, France DA - 27.05.2018 KW - 9-12% Cr ferritic-martensitic steels KW - Cyclic softening KW - Micromechanical model KW - Microstructural evolution KW - P92 steels PY - 2018 AN - OPUS4-47101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that are released from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack-tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for industrial soda-lime silicate glasses, which are practically free (< 1000 ppm) of dissolved water. To shed light on the corrosion process, the situation at the crack-tip is reversed in the present study as dissolved water in larger fractions is present in the glass and crack propagation is triggered in dry environment. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses of standard glass manufacturing. SCCG was measured using the double cantilever beam technique and by Vickers indentation. For dry glasses, three trends in the crack growth velocity versus stress intensity curve were found. The slope in region I limited by environmental corrosion increases in the order sodium aluminosilicate < sodium borosilicate ≲ sodium lead silicate. The velocity range of region II reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that those of low Tg are more prone to SCCG. As water strongly decreases Tg, it promotes SCCG. First results indicate that molecular water has a dominating influence on SCCG. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - DCB KW - Glass KW - Crack growth KW - Water speciation PY - 2018 AN - OPUS4-47164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan T1 - WP8 - RCS standardisation work N2 - The presentation presents a first work premise for the acceptable failrate of a hydrogen pressure vessel. Based on this premise, the basic algorithm for the analysis of given acceptance criteria is presented. T2 - TAHYA PSB Meeting#1 CY - TU Chemnitz, Germany DA - 20.11.2018 KW - FCH JU KW - TAHYA KW - Horizon 2020 KW - Safety assessment PY - 2018 AN - OPUS4-47178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Koerdt, Andrea T1 - Initial attachment of bacteria on PE-HD by fluorescence microscopy and colony-forming unit N2 - The first documentation of fuel biodeterioration dates back to the late 19th century. However, extensive studies concerning the microbial fuel contamination started in 1980’s. Polymeric fuel storage tanks containing diesel and biodiesel provide environmental conditions for microbial growth. Several studies demonstrated that bacteria, which were found in contaminated fuel systems, can use fuels as macronutrient; but such bacteria can also cause microbiologically influenced corrosion and fouling. The aim of this study is to investigate the initial attachment behavior of bacteria, isolated from a diesel contamination, on neat and photooxidized high-density polyethylene (PE-HD). Two common PE-HD’s, less- and biodiesel-stabilized, were radiated to UV light representing a tank exposed to sunlight. The effect of photooxidiation on PE-HD’s surface were characterized chemically by Fourier-transform infrared spectroscopy (FTIR). The attached bacteria Pseudomonas aeruginosa and Bacillus subtilis on the polymer surface were evaluated by fluorescence microscopy and colony-forming unit tests (CFU). T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Initial attachment KW - UV-irradiation PY - 2018 AN - OPUS4-45893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Böhning, Martin A1 - Niebergall, Ute T1 - PE-HD as a polymeric fuel storage tank material: Photooxidation, fuel sorption and long-term storage N2 - High-density polyethylene (PE-HD) is a commodity thermoplastic polymer which is typically used for packing of dangerous goods. Its good resistance against photooxidation, fuels, chemicals and other environmental factors in addition to low production costs makes PE-HD attractive for fuel storage applications. Typical engine fuels stored in polymer tanks are petrol, diesel and biodiesel that receives increasing attention as proper alternative to fossil fuels. One of the major problems with biodiesel is its susceptibility to oxidize due to its chemical composition of unsaturated fatty acids which also can cause polymer degradation. The aim of this study is to investigate the influence of different environmental factors, UV radiation and commonly stored fuels, on the mechanical, physical and chemical properties of two types of PE-HD polymers (stabilized and non-stabilized). The influence on the mechanical properties was tested by Charpy and tensile tests, chemical and physical properties were evaluated by Fourier-transform infrared spectroscopy (FTIR) and by dynamical mechanical analysis (DMA) tests. Samples were characterized after varying exposure time of UV radiation and after fully and partially immersion in biodiesel. In addition, similar experiments were conducted using diesel for comparison. T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Biodiesel KW - UV-irradiation KW - Long-term storage KW - Diesel PY - 2018 AN - OPUS4-45894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single-crystals of nickel-base superalloys at ultra-high homologous temperature N2 - The creep behavior of single-crystals of the nickel-base superalloy CMSX-4 was investigated at 1288°C, which is the temperature of the hot isostatic pressing (HIP) treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no Gamma’-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g. the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-section area psi of [001] crystals reached nearly 100%, while for a [111] crystal psi=62%. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals didn’t not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. From the shape of deformed specimens and TEM investigations it was concluded that the main strain contribution resulted from <011> {111} octahedral slip. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Nickel-base superalloys KW - Single-crystals KW - Creep PY - 2018 AN - OPUS4-45989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, U. T1 - Hochtemperatur Laserprofilometrie (HTLP) N2 - Der Vortrag gibt einen Überblick über Funktionsweise und Anwendungsmöglichkeiten der an der BAM entwickelten Messmethode der Hochtemperatur-Laserprofilomtrie T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.01.2018 KW - Sinterung KW - Hochtemperatur KW - Formerkennung PY - 2018 AN - OPUS4-46475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim T1 - Mechanische Werkstoffeigenschaften bei hoher Temperatur N2 - Der Vortrag behandelt die Herausforderungen bei der mechanischen Kennwertermittlung für Metalle bei hoher Temperatur. T2 - Festkolloquium 50 Jahre Institut für Werkstoffe CY - Bochum, Germany DA - 13.09.2018 KW - Kennwertermittlung KW - Mechanisches Verhalten KW - Hochtemperatur PY - 2018 AN - OPUS4-46014 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Weiterentwicklung der VSSA-Screening-Methode zur Identifizierung von NanoPulvern N2 - Der Vortrag zeigt zwei Möglichkeiten zur Verbesserung der VSSA-Screening-Methode zur Identifizierung von Nanopulvern auf. Bisher ist das Verfahren nur für monodisperse Partikel mit idealer Kugelform valide. Die Verteilungsbreite der Partikelgröße soll durch die Nutzung des Modells einer logarithmischen Normalverteilung implementiert werden. Die Abweichung der gemessenen Partikel von einer idealen Kugel in Sphärizität, Rundheit und Rauigkeit sind über einen Morphologiefaktor MF zu berücksichtigen. An einem konkreten Beispiel werden Auswirkungen der Implementierungen rechnerisch dargestellt und mit dem bisherigen Verfahren verglichen. T2 - NanoDefine Follow-up Meeting CY - Frankfurt/ Main, Germany DA - 25.09.2018 KW - VSSA KW - Nano particle KW - Particle size KW - Nano screening PY - 2018 AN - OPUS4-46070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh T1 - Betriebsfestigkeit von Reparaturstellen an Rotorblättern von Windkraftanlagen N2 - Hochleistungsverbundwerkstoffe, bzw. Glasfaser-Kunststoff-Verbunde (GFK), haben sich als Leichtbauwerkstoffe für Leichtflugzeuge und Rotorblätter von Windkraftanlagen etabliert. Die hohe spezifische Festigkeit und Steifigkeit qualifizieren sie besonders für diese Anwendung. Während der Fertigung werden Imperfektionen häufig in die Blattschalen eingebracht. Durch Witterungseinflüsse kommt es zum Schadensfortschritt. Infolgedessen treten Schäden in der Blattschale, die den sicheren Betrieb gefährden können, weit vor der projektierten Lebensdauer von 20 Jahren auf. Da der Austausch von ganzen Blättern sehr kostintensiv ist, ist eine lokale Reparatur des geschädigten Bereichs zur Wiederherstellung der strukturellen Integrität, viel preisgünstiger. Die Reparatur von Rotorblättern ist in den letzten Jahren zu einem wichtigen Thema geworden. Derzeit werden verschiedenste Reparaturkonzepte angewendet. Eine einheitliche Reparaturvorgabe gibt es bisher nicht. Die Auswirkungen der angewendeten Reparaturkonzepte auf die Betriebsfestigkeit der Reparaturstelle sind weitestgehend unbekannt und sollen deshalb in diesem Projekt untersucht werden. Gekrümmte Voll-Laminat sowie Sandwich Prüfkörper werden mit dem Vacuum-Assisted-Resin-Infusion-Prozess (VARI) produziert. Um einen Teil einer Rotorblattschale darzustellen, sind sie als GFK aufgebaut, beziehungsweise die Sandwich Strukturen mit einem Polyvinylchlorid-Schaumkern (PVC) Kern, wie im Original. Schalenreparaturen in verschiedenen Layup-Techniken und Geometrie werden eingebracht und die Materialeigenschaften mit zyklischen Ermüdungstests untersucht. Im Projekt werden ideal im Labor erzeugte Reparaturstellen mit in der Praxis angewendeten Ausführungstechniken eines Industriepartners experimentell verglichen. Für die in-situ Detektion der Schadensentwicklung während des Ermüdungsversuches kommt ein kombiniertes Felddehnungs- und Thermografie-Kamerasystem zum Einsatz. Das mechanische Verhalten und die Schadensentwicklung in den verschiedenen reparierten Prüfkörper wird miteinander sowie mit den Referenzproben ohne Reparaturstellen verglichen. Zudem wird in numerischen Modellen für die verschiedenen Reparaturtechniken eine Spannungsanalyse durchgeführt um hinsichtlich der Betriebsbeanspruchung eine Bewertung angeben zu können. T2 - Kolloquium Luftfahrzeugbau und Leichtbau, TU Berlin CY - Berlin, Germany DA - 18.06.2018 KW - Sandwich KW - Faserverstärkte Kunstoffe KW - Betriebsfestigkeit PY - 2018 AN - OPUS4-46026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Analysis of the fatigue strength of various repair concepts for wind turbine rotor blades N2 - High-performance composites, including glass-fiber reinforced plastic (GFRP) materials, are favored as a construction material for wind turbine rotor blades due to their high specific strength and stiffness properties. During the manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads. This leads to failure significantly before their projected 20-year lifespan. As replacement of entire blades can be a costly potential outcome, localized repair of the damaged region to restore structural integrity and thus lengthen its lifespan has become an important issue in recent years. Rotor blades are often repaired using a common technique for composite laminates: adhesively bonded structural repair patches. These methods involve replacing the lost load path with a new material that is joined to the parent structure, and include scarf or plug repairs. However, there currently do not exist any standardized repair procedures for wind turbine rotor blades, as comparisons of blade properties repaired with the existing methods have not been studied in depth. Namely, there is a lack of understanding about the effects of various repair methods on the fatigue life of the shells of rotor blades. This study therefore aims to begin to fill this knowledge gap by testing the influence of different repair patches on the blades’ mechanical properties. Manufactured with the vacuum-assisted resin infusion process, the test specimens are produced as a curved structure with GFRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Scarf repairs are then introduced with varying layup techniques, and material properties are examined with cyclical fatigue tests. Crack growth and development is monitored during fatigue testing by various non-destructive testing methods, including passive thermography with an infrared camera system, and a 3D deformation analysis system with ARAMIS. Large deformation fields and detection of in- and out-of-plane deformations is thus possible in-situ. The mechanical behavior and development of defects in the various repaired specimens is compared to each other as well as to reference test specimens with no repair patches. In-situ test data is combined with further non-destructive testing methods, including laminography, and active thermography, to develop a robust understanding of the effects of repair concepts. T2 - MSE Congress 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Fatigue of sandwich structures KW - Wind turbine blades KW - Sandwich PY - 2018 AN - OPUS4-46102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -