TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT T2 - 7. International Conference on Fatigue of Composites Vicenza N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.06.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501275 SP - 1 EP - 7 AN - OPUS4-50127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.07.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 AN - OPUS4-50126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Ghafafian, Carineh T1 - Scarf-joint repairs under fatigue loading investigated for sandwich shell applications N2 - Wind turbine rotor blades are produced as aerodynamic, three-dimensionally formed sandwich shell structures using mainly glass fiber reinforced plastics (GFRP). The GFRP used today have the potential to withstand the harsh operating conditions of rotor blades over the projected service life of 20 years. Premature damages that occur can be traced primarily back to design and/or manufacturing imperfections, as well as unusually high load scenarios (for instance lightning strikes, or strong winds combined with system control errors). Therefore, rotor blades have to be repaired several times (on average 2-3 times) during their projected service life. Approximately 70% of these are repairs of small- to medium-sized sandwich shells, carried out by technicians directly accessing the blade by suspended roping at the wind turbine location. The goal is to execute repairs that will last over the remaining service life, i.e. be sustainable. Within the framework of a research project carried out at BAM, Division 5.3 Polymer Matrix Composites, Department 5 for Materials Engineering, not only was the geometric shape (round vs. square in relation to the top view) varied, but also the layup of the scarf repair structure, variables that have not been studied systematically to-date. Sub-component scale sandwich shell specimens with representative repairs were used in this work in addition to coupon-scale specimens that are more commonly seen in literature. These sub-component shell specimens were tested using a unique shell test bench under loading conditions representative of wind turbine blade shell operating conditions with respect to fatigue strength. Using non-destructive testing methods (field strain measurement and thermography), damage development and distribution was monitored and analyzed in-situ. As a result, a concept was developed in which the repaired areas showed at least equivalent if not higher fatigue strength than the reference shells that were not repaired. T2 - ICFC9 - The 9th International Conference on the Fatigue of Composites CY - Vicenza, Italy DA - 21.06.2023 KW - Repair of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2023 AN - OPUS4-57929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – a comparison of various repair concepts for wind turbine rotor blade shells T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (conference proceedings) N2 - Localized patches are a cost- and time-effective method for repairing fiber-reinforced polymer (FRP) sandwich wind turbine rotor blade shells. To increase the understanding of their effect on the fatigue of the blades, this study examines the effect of various layup methods of localized repair patches on the structural integrity of composite sandwich structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the shell test specimens are produced as a curved structure with glass fiber reinforced polymer (GFRP) sandwiching a polyvinyl chloride (PVC) foam core. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The transition region between patch and parent material is studied in greater detail with finite element method (FEM) simulations, with a focus on the effect of fiber orientation mismatch. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts on material stiffness and strength. T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Lightweight materials KW - Glass fiber reinforced polymers KW - Sandwich KW - Wind turbine blades PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-482170 SP - 1 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -