TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Transducers PY - 2018 SP - 1 EP - 6 AN - OPUS4-46657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Humphrey, J.K. A1 - Gibson, A.G. A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Gettwert, V. T1 - Assessing the structural integrity of carbon-fibre sandwich panels in fire: Bench-scale approach N2 - The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux=200 kW m−2). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly exceeded, with rapid flash-over and progressive core softening and decomposition. There is a change in failure mode depending on whether the load is greater or less than 50% of the unexposed failure load, or in other words if one or two skins carry the load. At high loads, failure involved both skins with a single clear linear separation across each face. There is an inflection in the failure time relationship in the ∼50% load region, corresponding to the time taken for heat to be transmitted to the rear face, along with a change in the rear skin failure mode from separation to the formation of a plastic hinge. The integrity of the carbon front face, even with the resin burnt out, and the low thermal diffusivity of the core, both play key roles in prolonging rear face integrity, something to be borne in mind for future panel design. Intumescent coatings prolong the period before failure occurs. The ratio of times to failure with and without protection is proposed as a measure of their effectiveness. Apart from insulation properties, their adhesion and stability under severe fire impact play a key role. KW - Carbon fibres KW - Sandwich KW - Structural composites KW - Fracture KW - High-temperature properties KW - Surface treatments PY - 2019 U6 - https://doi.org/10.1016/j.compositesb.2018.11.077 SN - 1359-8368 VL - 164 SP - 82 EP - 89 PB - Elsevier AN - OPUS4-46908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Carbon fibre composites exemplarily research at BAM N2 - Lightweighting as a cross-cutting technology contributes significantly to achieve the European Green Deal goals. Based on, but not limited to, advanced materials and production technologies, the demand for natural resources and CO2 emmissions are reduced by lightweighting during production, as well as use phase. Therefore, lightweighting is a crucial transformation technology assisting in decoupling economic growth from resource consumption. In this manner, lightweighting contributes significantly as a key technology of relevance for many industrial sectors such as energy, mobility, and infrastructure, towards resource efficiency, climate action and economic strength, as well as a resilient Europe. To strengthen international partnerships, addressing global issues of today at the edge of science with high performance lightweight material based on carbon fibers, an overview about the BAM expertise in carbon fiber reinforced materials is given. T2 - Meeting KCarbon CY - Berlin, Germany DA - 15.06.2023 KW - Lightweighting KW - Carbon Fibers KW - Recycling KW - Push-out Test KW - multi scale testing PY - 2023 AN - OPUS4-58094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Munzke, Dorit A1 - Trappe, Volker T1 - Characterising the material degradation of inner pressure-loaded GFRP-tube specimens using distributed strain sensing N2 - Glass-fibre-reinforced plastics (GFRP) are commonly used for the construction of pressure vessels and tanks for example in automotive and aerospace industries. Especially for pressure vessels used for the storage of natural gas or hydrogen with operation pressures up to 700 bar, an early material fatigue detection is of great interest. Measuring the distributed strain profile of GFRP structures helps to understand and detect material fatigue. In this article, we demonstrate the great potential of swept wavelength interferometry (SWI) based distributed strain sensing for the monitoring of pressure vessels made from GFRP. A resin transfer molding (RTM) process was used to manufacture GFRP-tube specimens. Commercial optical fibres with polyimid coating were glued to the surface externally in circumferential and axial direction. A cyclic load of up to 150 bar was applied to the samples using a servo-hydraulic test bench. Comparing the loaded and unloaded test conditions, we determined up to 2 % elongation in circumferential direction. We demonstrate reliable distributed strain measurements with sub-centimetre spatial resolution. By monitoring these high-resolution strain profiles, we were able to detect local material degradation that manifested itself as localized strain changes. Crucially, the material Degradation could be detected already after 75 % of dat the fatigue life before a crack appeared that led to leakage. T2 - Sensoren und Messsysteme - 19. ITG/GMA-Fachtagung CY - Nürnberg, Germany DA - 26.06.2018 KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry KW - Swept wavelength interferometry (SWI) KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre PY - 2018 UR - https://ieeexplore.ieee.org/document/8436172/ SN - 978-3-8007-4683-5 SP - 239 EP - 242 PB - VDE VERLAG GMBH CY - Berlin AN - OPUS4-45887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Composite materials - focus polymer matrix composites (PMC) N2 - Lecture about polymer matrix composites as part of the first trainings event GW4SHM, properties, production, basic theory, testing. T2 - 1. Training GW4SHM-Project CY - BAM, Berlin, Germany DA - 23.11.2020 KW - Polymer matrix composites KW - Composite testing KW - NDT PY - 2020 AN - OPUS4-51868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Current and future technological advancement in polymer matrix composites enabled through fundamental discoveries N2 - This presentation is a summary of the work from the past 20 years’ development of PMC-testing at the BAM-FB 5.3 with respect to safety-relevant design of advanced light weight structures in aircraft, wind turbine and automotive applications. The talk begins with wood as an example from nature, and emphasizes that load case, fiber architectural design and the production process and quality have to go hand in hand to generate an advanced light weight structure. Since PMC-relevant basic findings of mankind span across hundreds of years, high-performance composite applications today are based more on long term experiences than on breakthrough inventions of modern days. In the second part of the talk, future plans and projects of FB-5.3 are presented, specifically addressing H2-safety, circular economy, recycling by design and digitalization of PMC-technologies. T2 - Abteilungsseminar CY - Online meeting DA - 07.09.2021 KW - Polymer Matrix Composites KW - Thermo mechanical fatigue PY - 2021 AN - OPUS4-54150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Kraus, David A1 - Eisermann, René A1 - Kübler, Stefan A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Trappe, Volker T1 - Distributed fiber-optic strain sensing with millimeter spatial resolution for the structural health monitoring of multiaxial loaded GFRP tube specimens N2 - Due to their high strength-to-weight ratio and excellent fatigue resistance, glass fiber reinforced polymers (GFRP) are used as a construction material in a variety of applications including composite high-pressure gas storage vessels. Thus, an early damage detection of the composite material is of great importance. Material degradation can be determined via measuring the distributed strain profile of the GFRP structures. In this article, swept wavelength interferometry based distributed strain sensing (DSS) was applied for structural health monitoring of internal pressure loaded GFRP tube specimens. Measured strain profiles were compared to theoretical calculation considering Classical Lamination Theory. Reliable strain measurements with millimeter resolution were executed even at elongations of up to 3% in the radial direction caused by high internal pressure load. Material fatigue was localized by damaged-induced strain changes during operation, and detected already at 40% of burst pressure. KW - GFRP KW - Swept wavelength interferometry KW - Distributed fiber optic sensing KW - Material degradation KW - Structural health monitoring PY - 2019 U6 - https://doi.org/10.1016/j.polymertesting.2019.106085 SN - 0142-9418 VL - 80 SP - 106085 PB - Elsevier Ltd. AN - OPUS4-48950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional DMA and, based on a linear viscoelastic approach, the storage modulus (E’;G’), the loss modulus (E’’;G’’) and the loss angle tan(delta) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young’s modulus. T2 - 20th European Conference on Composite Materials, ECCM20 CY - Lausanne, Switzerland DA - 26.06.2022 KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process KW - Cross linking PY - 2022 AN - OPUS4-55213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional OMA and, based on a linear viscoelastic approach, the storage modulus (E';G'), the loss modulus (E'';G'') and the loss angle tan(δ) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young's modulus. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Cross linking KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569651 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 181 EP - 186 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cysne Barbosa, Ana Paula A1 - Azevedo do Nascimento, Allana A1 - Pavasarytė, Lina A1 - Trappe, Volker A1 - Melo, D. T1 - Effect of addition of thermoplastic self-healing agent on fracture toughness of epoxy N2 - Self-healing agents have the potential to restore mechanical properties and extend service life of composite materials. Thermoplastic healing agents have been extensively investigated for this purpose in epoxy matrix composites due to their strong adhesion to epoxy and their ability to fill in microcracks. One of the most investigated thermoplastic additives for this purpose is poly(ethylene-co-methacrylic acid) (EMAA). Despite the ability of thermoplastic healing agents to restore mechanical properties, it is important to assess how the addition of thermoplastic healing agents affect properties of the original epoxy material. In this work, EMAA was added to epoxy resin and the effect of the additive on fracture toughness of epoxy was evaluated. Results indicate that although added in low concentrations, EMAA can affect fracture toughness. T2 - 6th Brazilian Conference on Composite Materials CY - Tiradentes, Minas Gerais, Brazil DA - 14.08.2022 KW - Epoxy KW - Self-healing KW - Thermoplastic KW - Fracture PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572707 SN - 978-65-00-49386-3 SN - 2316-1337 SP - 219 EP - 222 AN - OPUS4-57270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Effective composite testing – from specimen size to component scale N2 - Even for the basic measurements of material data for design and engineering of composite structures there is a need to upgrade standards. With a new shear frame test rig more precise values can be obtained. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. Test blades of ~10m are an efficient way for SHM research and evaluation of NDT-methods and blade geometry. T2 - colloquium genesis-puc CY - Rio de Janeiro, Brazil DA - 01.11.2019 KW - Polymer matrix composites KW - Nondestructive testing KW - New standards PY - 2019 AN - OPUS4-50129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and wind turbine rotor blades are made up primarily of fiber reinforced plastics. Failure of these materials heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An inhouse designed compact tensile testing machine with a load range up to 15 kN was integrated into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. This technique allows fast measurements over large fields-of-view and is ideal for in-situ investigations. Imaging and the tensile test are run at the highest possible frame rate (0.7 s-1 ) and the lowest possible strain rate (5.5∙10-4 s -1 ). For 0°/90° non-crimp fabrics, the first inter-fiber cracks occur at 380 MPa (strain 0.8 %). Prior to failure at about 760 MPa (strain 2.0 %), we observe the evolution of nearly equidistant (1 mm distance) cracks running across the entire sample in the fully damaged state. KW - X-ray refraction KW - Diffraction Enhanced Imaging KW - Carbon Fiber Reinforced Plastics KW - In situ tensile test KW - Crack evolution PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515060 SN - 1757-8981 SN - 1757-899X VL - 942 SP - 012035-1 EP - 012035-9 PB - IOP publishing CY - Bristol, UK AN - OPUS4-51506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Trappe, Volker T1 - Failure Mechanisms of GFRP Scarf Joints under Tensile Load N2 - A potential repair alternative to restoring the mechanical properties of lightweight fiberreinforced polymer (FRP) structures is to locally patch these areas with scarf joints. The effects of such repair methods on the structural integrity, however, are still largely unknown. In this paper, the mechanical property restoration, failure mechanism, and influence of fiber orientation mismatch between parent and repair materials of 1:50 scarf joints are studied on monolithic glass fiber-reinforced polymer (GFRP) specimens under tensile load. Two different parent orientations of [-45/+45]2S and [0/90]2S are exemplarily examined, and control specimens are taken as a baseline for the tensile strength and stiffness property recovery assessment. Using a layer-wise stress analysis with finite element simulations conducted with ANSYS Composite PrepPost to support the experimental investigation, the fiber orientation with respect to load direction is shown to affect the critical regions and thereby failure mechanism of the scarf joint specimens. KW - Scarf joint KW - Glass fiber reinforced polymers KW - Failure mechanisms PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523952 VL - 14 IS - 7 SP - 1806 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Azevedo do Nascimento, A. A1 - Trappe, Volker A1 - Diniz Melo, J. D. A1 - Cysne Barbosa, A. P. T1 - Fatigue behavior of self-healing glass fiber/epoxy composites with addition of poly (ethylene-co-methacrylic acid) (EMAA) N2 - The interest in repair technologies for polymer composites has increased significantly over the last decades, due to the growing use of these materials in structural applications. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was used as self-healing agent to glass fiber/epoxy composite. Materials with EMAA contents of 2 wt% and 5 wt% were manufactured using Resin Transfer Molding (RTM) and the effects of the healing agent on the properties were investigated using tensile tests and Dynamic Mechanical Analysis (DMA). Results show slight variation of properties, which was more pronounced as the content of EMAA increased. In addition, the healing efficiency was investigated through fatigue tests and the addition of higher content of EMAA increased the number of cycles to failure after the healing activation cycle. KW - Fatigue KW - Glass fiber-epoxy composites KW - Self-healing KW - Smart materials PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569661 SN - 0142-9418 VL - 117 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-56966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Fatigue life evaluation and certification according to CS22 N2 - The common fatigue life certification of aircrafts according to the certification Standards 23 and 25 follows a building block approach. Static tests at room temperature as well in humid and high temperature conditions are done on the coupon level. Additionally, a full-scale static and fatigue test must be performed on the complete airframe (minimum on the fuselage together with the wing). For each type-certificate the complete building block approach test program must be performed. Traditionally in Germany, the certification of sailplanes (Certification Standard 22) follows rather a family concept. A shared data base was created over the last 50 years based upon a large number of material testing. In addition to static tests at room temperature and hot-humid conditions, fatigue tests are also done on the coupon level. Additional static and fatigue tests were done on complex structures such as spar-beams, fuselages and full-scale wing structures. However, for each type-certificate, only static tests should be performed in full-scale. This concept is determined by the certification memorandum CM-S-006 “Composite Lightweight Aircraft” 2017. The presentation was given as an introduction to the discussion about the future expectations and developments of the EASA concerning the type-certification of lightweight aircrafts according to CS22 at the OSTIVE Sailplane Development Panel Meeting at the EASA in Cologne on the 11th of October 2019. T2 - OSTIV Sailplane Development Panel Meeting 2019, Europäische Agentur für Flugsicherheit (EASA) CY - Cologne, Germany DA - 11.10.2019 KW - Certification Standard 22 KW - EASA KW - Sailplane Development Panel KW - Fatigue Life Evaluation PY - 2019 AN - OPUS4-50147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trappe, Volker T1 - Fatigue life evaluation of composite wing spar cap materials N2 - An effective method for evaluating the fatigue strength of thick unidirectional composite laminates of wing spar caps has been presented here. A typical width-tapered bending specimen has been developed for a four-point loading set up. Static and fatigue loading was performed at a load ratio R = -1. The complex stress state has been investigated numerically by finite element analysis. Finally, the concept is proven experimentally on specimens made of pultruded fibre rods. The fatigue behavior of the continuously tapered width by water Jet cutting has been compared to discrete tapering via rod-drop. The new method enables a screening of material fatigue behavior caused by normal and shear loading. KW - Fatigue Testing KW - Pultruded fiber rods KW - CFRP KW - Four-point bending test KW - Spar cap design PY - 2019 U6 - https://doi.org/10.3139/120.111431 SN - 0025-5300 VL - 61 IS - 12 SP - 1135 EP - 1139 PB - Carl Hanser Verlag CY - München AN - OPUS4-50090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.07.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 AN - OPUS4-50126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.06.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-501275 SP - 1 EP - 7 AN - OPUS4-50127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Fully-reversed fatigue behavior of scarf joint repairs for wind turbine blade shell applications N2 - To enable a quick and cost-effective return to service for wind turbine blades, localized repairs can be executed by technicians in the field. Scarf repairs, shown to be highly efficient with a smooth load transition across angled joint walls and a restored aerodynamic profile, are the focus of this work. The failure mechanisms of these structures were examined under quasi-static tensile and fully-reversed cyclic loading. While the scarf ratio was held constant at 1:50, the repair layup was varied between large-to-small and small-to-large. The effect of the presence of resin pockets and the fiber orientation mismatch between parent and repair material on the restored strength of BIAX ±45° glass fiber reinforced polymer scarf joint structures was studied. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Fatigue KW - Scarf repairs KW - Glass fiber reinforced polymers PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569646 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 195 EP - 201 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -