TY - THES A1 - Kraus, David T1 - Ermüdungsverhalten von Glasfaser-Kunststoff-Verbunden unter thermomechanischer Beanspruchung N2 - Die Werkstoffgruppe der Faser-Kunststoff-Verbunde (FKV) hat sich aufgrund ihrer hervorragenden Leichtbaueigenschaften unter anderem im Sportgerätebau, in der Luft- und Raumfahrt und in der Windenergieindustrie etabliert. Die so hergestellten Strukturen sind in der Regel nicht nur mechanischen Belastungen, sondern auch thermischen Lasten in einem breiten Temperaturspektrum ausgesetzt. Dennoch ist die Auswirkung des Temperatureinflusses bei einer Kombination von thermischer und mechanischer Last auf die Lebensdauer von Strukturen aus FKV bisher nur wenig untersucht. Im Rahmen dieser Arbeit wird der Einfluss von Temperaturen zwischen 213 K und 343 K auf einen Glasfaser-Epoxidharz-Verbund experimentell untersucht. Das Material wird in diesem Temperaturbereich eingehend charakterisiert: Es werden sowohl die thermomechanischen Eigenschaften von Faser- und Matrixwerkstoff als auch die des Verbundes ermittelt. In einem weiteren Schritt wird dann der Einfluss der Temperatur auf die Schädigungsentwicklung im quasi-statischen Lastfall sowie unter schwingender Ermüdungsbeanspruchung bei verschiedenen FKV-Mehrschichtverbunden analysiert. Basierend auf den experimentellen Daten wird ein Zusammenhang zwischen der Schädigung und der Anstrengung der Matrix innerhalb der Einzelschicht demonstriert. Die Matrixanstrengung wird mithilfe eines mikromechanischen Modells unter Berücksichtigung der thermomechanischen Eigenspannungen analytisch berechnet. Bei Querzugbeanspruchung kann gezeigt werden, dass eine Vorhersage der Schädigung in Abhängigkeit der Volumenänderungsenergie innerhalb der Matrix getroffen werden kann. Mithilfe des Konzepts der Matrixanstrengung ist eine Vorhersage der Lebensdauer des Werkstoffs unter schwingender Ermüdungsbeanspruchung in Abhängigkeit der Einsatztemperatur möglich. N2 - Due to their superior lightweight properties, fiber reinforced polymer (FRP) materials are well established in various fields, such as sports equipment, aerospace or wind energy structures. These structures are not only subjected to mechanical loads, but also to a broad spectrum of thermal environments. However, the impact of temperature on the fatigue life of thermomechanically loaded FRP structures is barely investigated to-date. In the scope of this work, the influence of temperatures in a range of 213 K to 343 K on a glass fiber reinforced epoxy polymer is experimentally examined. An extensive thermo-mechanical characterization of the static properties of the material is performed. The neat resin and Fiber material are investigated, as well as the composite. In addition, the impact of thermal loads on the damage evolution under quasi-static as well as cyclic fatigue loading is investigated for different multi-angle laminates. Based on the experimental data, a correlation is shown between damage and matrix effort of the unidirectional layer. The matrix effort is calculated according to a micromechanical model considering thermal residual stresses. Particularly under transverse loading, the damage Evolution can be predicted as a function of the dilatational strain energy of the matrix. Using the concept of the matrix effort presented in this work, a prediction of the fatigue life of the investigated material at different ambient temperature conditions can be performed. T3 - BAM Dissertationsreihe - 169 KW - Ermüdung KW - Faser-Kunststoff-Verbund KW - GFK KW - Schädigung KW - Thermomechanik KW - Fatigue KW - Composite KW - Glas fibre reinforced polymer KW - Damage KW - Thermomechanics PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530253 SN - 1613-4249 VL - 169 SP - 1 EP - 164 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David T1 - Einfluss thermischer Lasten auf die Schädigung von Faser-Kunststoff-Verbunden N2 - Faser-Kunststoff-Verbunde (FKV) werden zunehmend in der Luft- und Raumfahrt, der Automobil- und Windenergieindustrie eingesetzt. Die hier entwickelten Bauteile sind oft nicht nur multiaxialen mechanischen Belastungen, sondern auch hohen klimatischen Beanspruchungen ausgesetzt. Einsatztemperaturen zwischen -60°C und 100°C bei 10-90% relativer Feuchte sind keine Seltenheit, in der Raumfahrt sind die thermischen Belastungen noch extremer. Die Auswirkungen einer Wechselwirkung extremer klimatischer Beanspruchungen mit multiaxialen mechanischen Belastungen wurden bisher kaum betrachtet. Das Ziel des Projektes ist die Untersuchung des Ermüdungsverhaltens der Faser-Kunststoff-Verbunde in Abhängigkeit von multiaxialer mechanischer Belastung, Temperatur und Feuchte. Dazu werden umfangreiche experimentelle Untersuchungen an Flach- und Rohrproben sowie numerische und analytische Berechnungen durchgeführt. Im Rahmen des Seminarvortrags wird eine mikromechanische Modellierung der thermischen Eigenspannungen innerhalb des FKV vorgestellt, welche anhand eines Finite-Elemente-Modells validiert wird. Zur Bestimmung einer Schädigungsgrenze werden verschiedene Energieansätze diskutiert, welche anschließend mit den experimentell erhaltenen Ergebnissen im Temperaturbereich zwischen -60 °C und 70 °C verglichen werden. Dabei wird gezeigt, dass mithilfe der mikromechanischen Formulierung eine temperaturunabhängige Masterschädigungslinie für quasistatisch belastete Probekörper abgeleitet werden kann. Des Weiteren können Elastizitäten und Festigkeiten in Abhängigkeit der Temperatur mit den mikromechanischen Mischungsregeln bestimmt werden. So kann der experimentelle Aufwand beim Nachweis thermomechanisch belasteter Strukturen reduziert werden. Ein ähnlicher Ansatz wird für schwingende Ermüdungsbelastung bei verschiedenen Umgebungstemperaturen diskutiert und experimentell überprüft. T2 - Kolloquium Luftfahrzeugbau und Leichtbau, TU Berlin CY - Berlin, Germany DA - 18.02.2019 KW - Composite KW - Ermüdung KW - Faser-Kunststoff-Verbunde KW - Thermomechanik KW - Schädigung PY - 2019 AN - OPUS4-47405 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Alexander T1 - Schädigungscharakterisierung an Faser-Kunststoff-Verbunden im Schwingversuch mittels Röntgenrefraktionstopographie unter Berücksichtigung der Matrixeigenschaften N2 - In der vorliegenden Arbeit wurden verschiedene Epoxidharzsysteme charakterisiert. Zwei Systeme mit großen bruchmechanischen Unterschieden wurden zur Fertigung äquivalenter GFK- und CFK-Laminate mit Faserausrichtungen in 0/90° und ±45° ausgewählt. In quasi-statischen Zugversuchen und Einstufenschwingversuchen mit einem Beanspruchungsverhältnis von R= 0,1 wurden diese Laminate hinsichtlich ihres Schädigungsbeginns und ihrer Schädigungsentwicklung untersucht. Die Detektion der Schädigungen sowie die Dokumentation der Schädigungsentwicklung wurde anhand der Lichtabsorptionsanalyse an GFK-Laminaten und anhand der Röntgenrefraktionsanalyse an CFK-Laminaten umgesetzt. Auf diese Weise konnten Einflüsse der bruchmechanischen Eigenschaften der Matrix auf die Schädigungsentwicklung im Verbund aufgezeigt werden. Zudem wurden für die untersuchten Laminate die Schädigungsgrenzen bei schwingender Beanspruchung ermittelt. Anhand durchgeführter Schwingversuche an CFK-Laminaten im Very High Cycle Fatigue-(VHCF)-Lastwechselbereich bis 108 konnten Rückschlüsse vom Schädigungsverhalten im High Cycle Fatigue-(HCF)-Lastwechselbereich bis 106 auf die Dauerfestigkeit im VHCF-Bereich gezogen werden und damit VHCF-Dauerfestigkeitsgrenzen bestimmt werden. Mit dem Ziel die Ermüdung der Laminate auf die Beanspruchung der Matrix zurückzuführen, wurden die Erweiterte Inverse Laminattheorie, mikromechanikbasierte Mischungsregeln sowie eine Vergleichsspannungshypothese auf die untersuchten Laminate angewendet. Die Schädigungsgrenzen konnten damit in Form der Matrixbeanspruchung wiedergegeben werden. Die Abbildung der Ermüdung verschiedener Laminate anhand einer matrixspezifischen normierten Masterschädigungslinie ist für die behandelten CFK- und GFK-Laminate gelungen. T3 - BAM Dissertationsreihe - 162 KW - CFK KW - GFK KW - Ermüdung KW - Epoxidharz KW - Masterschädigungslinie KW - Röntgenrefraktion KW - ZfP PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-467833 SN - 1613-4249 VL - 162 SP - 1 EP - 204 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Radners, J. A1 - Han, Ying A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Aluminium Hochtemperaturermüdung N2 - Die hohen Betriebstemperaturen während des Einsatzes von Radialverdichterrädern in Abgasturboladern führen zu einer Änderung der ursprünglich eingestellten Mikrostruktur in der warmfesten Aluminiumlegierung EN AW-2618A (Überalterung). Grund dafür sind thermische Belastungen, die nahe der Aushärtetemperatur liegen und diese kurzzeitig sogar überschreiten können. Die Alterungsmechanismen wurden zusammen mit den Themen niederzyklische (LCF) und thermomechanische Ermüdung (TMF) sowie Kriechen bis max. 190 °C in vorangegangenen Forschungsvorhaben untersucht. Kaum untersucht war bisher das Verhalten der Legierung unter hochzyklischer Beanspruchung (HCF) sowie der Einfluss von Kerben und Lastkollektiven. Da zukünftig mit weiter steigenden Betriebstemperaturen für Radialverdichter zu rechnen ist, wurde in diesem Forschungsvorhaben das HCF-Verhalten bei 230 °C untersucht und somit bei einer Prüftemperatur, die deutlich oberhalb der Aushärtetemperatur liegt. Das Ziel des Projektes war der Aufbau einer geeigneten experimentellen Datenbasis, das Verständnis der relevanten mikrostrukturellen Prozesse sowie die Weiterentwicklung und Anpassung geeigneter Modelle und Bewertungsmethoden. Das experimentelle Untersuchungsprogramm umfasste neben einer Basischarakterisierung des HCF-Verhaltens am Ausgangszustand T61 gezielte mechanische Versuche zur Isolierung der Einflussfakto-ren Mittelspannung (𝑅 = −1, 𝑅 = 0,1), Werkstoffüberalterung (T61, 10 h/230 °C, 1000 h/230 °C), Prüftemperatur (20 °C, 230 °C), Prüffrequenz (0,2 Hz, 20 Hz) sowie Kerbwirkung und variable Amplituden. Darauf aufbauend wurden die in den vorangegangenen Projekten entwickelten Modelle und Bewertungsmethoden angepasst und weiterentwickelt, um die genannten thermischen und mechanischen Belastungen in der Lebensdauerbewertung abzubilden. KW - HCF KW - Aluminium KW - EN AW-2618A KW - Ermüdung PY - 2023 SP - 1 EP - 111 CY - Frankfurt am Main AN - OPUS4-57850 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -