TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material JF - Advanced Engineering Materials N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing JF - Open Ceramics N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Held, A. A1 - Katsikis, N. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Influence of the dispersant on the parts quality in slurry-based binder jetting of SiC ceramics JF - Journal of the American Ceramic Society N2 - Binder jetting is establishing more and more in the ceramic industry to produce large complex shaped parts. A parameter with a great impact on the quality of the parts is the binder–powder interaction. The use of ceramic slurries as feedstock for this process, such as in the layerwise slurry deposition–print technology, allows a great flexibility in the composition. Such slurries are typically composed of ceramic powder, water, and small amounts of various additives. The understanding of the effect of these components on the printing quality is thus essential for the feedstock development. Four models were developed regarding the impact of additives, such as dispersants on printing. These models were confirmed or rebutted by experiments performed for an SiC slurry system with two different concentrations of a dispersant and a commercial phenolic resin used as a binder. It is shown that for this system the influence of the dispersant on the curing behavior and the clogging of the pores by dispersant can be neglected. The redispersion of the dispersant after the curing of the resin has no or only a minor effect. However, the wetting behavior determined by the surface energies of the system seem to be most crucial. In case the surface energy of the slurry additive is significantly lower than the surface energy of the binder, the strength of the green parts and the printing quality will be low. This was shown by inverse gas chromatography, contact angle measurement, rheological characterization, and mechanical tests with casted samples. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise slurry deposition KW - Silicon carbide KW - Wetting PY - 2022 DO - https://doi.org/10.1111/jace.18693 SN - 1551-2916 VL - 2022 SP - 1 EP - 15 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-55542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition JF - Journal of the European Ceramic Society N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures JF - Advanced Materials Technologies N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 DO - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Melo Bernardino, Raphael A1 - Valentino, S. A1 - Franchin, G. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Manufacturing of ceramic components with internal channels by a novel additive/subtractive hybridizazion process JF - Open Ceramics N2 - A new approach for fabrication of ceramic components with inner channels is proposed, as a result of the combination of two additive and one subtractive manufacturing processes. In this project, porcelain parts are manufactured by the Layerwise Slurry Deposition (LSD) process, meanwhile end milling and Direct Ink Writing (DIW) are applied to create channels on the surface of the deposited ceramic. Unique to the LSD process is the Formation of a freestanding powder bed with a mechanical strength comparable to conventional slip casted ceramic green bodies. Combining these three processes allows the manufacturing of ceramic objects containing an internal path of ink, which in this case was a graphite-based ink that can be further eliminated by heat treatment to obtain a porcelain object embedded with channels. The results show the capabilities of this method and its potential to fabricate not only parts with inner channels, but also multi-material and multi-functional components (such as integrated electronic circuits). KW - Additive Manufacturing KW - Layerwise Slurry Deposition KW - Hybrid Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510012 UR - https://www.sciencedirect.com/science/article/pii/S2666539520300109?via%3Dihub DO - https://doi.org/10.1016/j.oceram.2020.100010 VL - 2 SP - 100010 PB - Elsevier Ltd. AN - OPUS4-51001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print) JF - Journal of the European Ceramic Society N2 - The current work presents for the first time results on the Additive Manufacturing of SiSiC complex parts based on the Layerwise Slurry Deposition (LSD) process. This technology allows to deposit highly packed powder layers by spreading a ceramic slurry and drying. The capillary forces acting during the process are responsible for the dense powder packing and the good joining between layers. The LSD process can be combined with binder jetting to print 2D cross-sections of an object in each successive layer, thus forming a 3D part. This process is named LSD-print. By LSD-print and silicon infiltration, SiSiC parts with complex geometries and features down to 1mm and an aspect ratio up to 4:1 could be demonstrated. The density and morphology were investigated for a large number of samples. Furthermore, the density and the mechanical properties, measured by ball-on-three-balls method, were in all three building directions close to isostatic pressed references. KW - Silicon Carbide KW - Additive Manufacturing KW - 3D printing KW - Layerwise slurry deposition KW - LSD print PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.05.009 VL - 2019 IS - 39 SP - 3527 EP - 3533 PB - Elsevier Ltd. AN - OPUS4-48546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -