TY - JOUR A1 - Prewitz, M. A1 - Gaber, M. A1 - Müller, Ralf A1 - Marotzke, C. A1 - Holtappels, Kai T1 - Polymer coated glass capillaries and structures for high-pressure hydrogen storage: Permeability and hydrogen tightness N2 - The hydrogen tightness of high-pressure hydrogen storage is a Basic criterion for long-term storage. The H2 permeation coefficients of epoxy resin and a glass lacquer were determined to enable the geometric optimization of a glass capillary storage. It was found that the curing conditions have no significant influence on the H2 permeation coefficient of resin. The H2 permeation coefficient of epoxy resin is only about three orders of Magnitude greater than that of borosilicate glass. This suggests that the initial pressure of 700 bar takes about 2.5 years to be halved in capillary array storage. Therefore, a high-pressure hydrogen storage tank based on glass capillaries is ideally suited for long-term storage in mobile applications. KW - Permeability KW - Glass capillaries KW - Coating KW - Hydrogen storage KW - Long-term calculation KW - Epoxy resin PY - 2018 U6 - https://doi.org/10.1016/j.ijhydene.2017.12.092 SN - 0360-3199 VL - 43 IS - 11 SP - 5637 EP - 5644 PB - Elsevier AN - OPUS4-44327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Master curve for viscous crack healing N2 - A novel method to generalize kinetic data of viscous crack healing in glasses is proposed. The method assumes that crack healing progress is proportional to the healing time, t, and indirect proportional to viscosity, n. This way, crack length and crack width data, normalized to the initial crack length and plotted versus t/n, allow to compare crack healing progress for different cracks and healing temperatures in a master curve. Crack healing experiments conducted in this study demonstrate the applicability of this method for a commercial microscope slide glass. KW - Crack healing KW - Glass KW - Master curve KW - Vickers indentation PY - 2018 U6 - https://doi.org/10.1016/j.matlet.2017.12.082 SN - 0167-577X SN - 1873-4979 VL - 216 SP - 110 EP - 112 PB - Elsevier AN - OPUS4-44300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 U6 - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency N2 - Surface roughness, R Z , normal transmittance, Τ N , total transmittance, Τ T , and photovoltaic (PV) module efficiency, η S , were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200 – 400 μ m), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch ‐ like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch ‐ like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽ 2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. KW - Transmittance KW - Efficiency KW - Photovoltaic modules KW - Roughness KW - Sand blasting PY - 2018 U6 - https://doi.org/10.1002/er.3930 SN - 1099-114X SN - 0363-907X VL - 42 IS - 3 SP - 1298 EP - 1307 PB - Wiley & Sons, Ltd. AN - OPUS4-44157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behrens, H. A1 - Bauer, U. A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Müller, Ralf A1 - Deubener, J. T1 - Structural relaxation mechanisms in hydrous sodium borosilicate glasses N2 - Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses. KW - Borosilicate glass KW - Water KW - Relaxation KW - Internal friction KW - Glass transition PY - 2018 U6 - https://doi.org/10.1016/j.jnoncrysol.2018.05.025 VL - 497 SP - 30 EP - 39 PB - Elsevier B.V. AN - OPUS4-45608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. T1 - VACUUM HOT EXTRACTION (VHE-MS): Concentration, diffusion and degassing of volatiles N2 - Der Vortrag gibt eine Einführung in die Methode der Vakuumheißextraktion und beschreibt die Anwendungsmöglichkeiten der an der BAMN betriebenen Anlage. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.1.2018 KW - Gasabgabe KW - Diffusion KW - Gasgehalt PY - 2018 AN - OPUS4-45665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Deubener, J. A1 - Behrens, H. T1 - Wasser in Silicatglas N2 - Der Vortrag gibt einen Überblick über den Stand des Wissens zum strukturellen Einbau von Wasser in Silicat- und Boratgläsern, den Einfluss des gelösten Wassers auf deren Viskosität sowie zu den strukturellen Vorstellungen zum Wassertransport. T2 - 1. Fachsymposium der Glasapparatebauer CY - Munich, Germany DA - 19.04.2018 KW - Wasser KW - Glass KW - Struktur PY - 2018 AN - OPUS4-45669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464711 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 U6 - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, U. T1 - Hochtemperatur Laserprofilometrie (HTLP) N2 - Der Vortrag gibt einen Überblick über Funktionsweise und Anwendungsmöglichkeiten der an der BAM entwickelten Messmethode der Hochtemperatur-Laserprofilomtrie T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.01.2018 KW - Sinterung KW - Hochtemperatur KW - Formerkennung PY - 2018 AN - OPUS4-46475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Marzok, Ulrich A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Hydrogen diffusivity in sodium aluminosilicate glasses N2 - Hydrogen gas diffusivity of fourteen glasses of the Na2O-Al2O3-SiO2 system are studied along the joins quartzalbite-jadeite-nepheline (Qz-Ab-Jd-Np, fully polymerized) and albite-sodium disilicate (Ab-Ds, depolymerized). Density measurements show that ionic porosity decreases from 54.4% (Qz) to 51.5% (Np) and from 52.4% (Ab) to 50.2% (Ds). Hydrogen diffusivity D follows similar trends but at another scale. D at 523 K decreases from 4×10−12 to 3×10−14m2 s−1 (Qz-Np) and from 4×10−13 to 3×10−15m2 s−1 (Ab-Ds). Charge compensating Na+ acting as a filling agent in fully polymerized network structures leads to up to one order of Magnitude higher diffusivities as depolymerized glass structures of the same SiO2 content where Na+ takes the role of a modifier ion. Temperature dependence of the diffusivity indicates that both the activation energy involved with the moving H2 molecule as well as the accessible volume in the structure contribute to this compositional trend. KW - Aluminosilicate glasses KW - Hydrogen diffusivity KW - Ionic porosity PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.119502 VL - 521 SP - 119502 PB - Elsevier B.V. AN - OPUS4-50392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Deubener, J. A1 - Müller, Ralf A1 - Behrens, H. T1 - Statistical analysis of propagation rates of indentation-induced radial cracks N2 - Due to the stochastic nature of crack nucleation by Vickers indentation, a statistical analysis of propagation rates of 185 radial cracks was performed. Crack growth was observed directly using a video camera with high Image acquisition rate. It is found that propagation rates are controlled by the environmental reactions at the crack-tip shortly after their initiation (< 1 s). Calibration of the stress intensity KI showed that the residual stress factor χ and the exponent n of the equation KI==χPc−n (with P==load and c==crack length) are broadly distributed among the 185 analyzed cracks, ranging from 10−16 to 104 and from 0.1 to 5, respectively. For the most frequent crack, the equation KI==0.052Pc−1.47 holds. The results show that correlations of indentation-induced crack length to stress intensity necessitate the use of statistical significant data that are calibrated by the environmental reactions at the crack-tip. KW - Stress intensity factor KW - Vickers indentation KW - Subcritical crack growth KW - Soda-lime-silica glass PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.119739 VL - 527 SP - 119739 PB - Elsevier B.V. AN - OPUS4-50393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered ¬glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 93rd Annual Meeting German Soc Glass Technol in conjunction with annual meeting French Union for Sci and Glass technol CY - Nuremberg, Germany DA - 13.05.2019 KW - Blähen KW - Glass KW - Kristallisation KW - Sintern PY - 2019 AN - OPUS4-50433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Vacuum hot extraction: Detection of volatiles N2 - Der Vortrag gibt einen Überblick über die Möglichkete und Grenzen der Methode der Vakuum-Heiß-Extraktion an der BAM T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Heißgasextraktion KW - Glas PY - 2019 AN - OPUS4-50434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan T1 - Dynamic Mechanical Analysis (DMA): Viscoelasticity N2 - Der Vortrag gibt einen Überblick über die am FB 56 der BAM betriebene Dynamisch-Mechanische Analyse mit dem Schwerpunkt auf Anwendungen für Glas N2 - The talk presents an overview over the method of Dynamic Mechanical Analysis used at the BAM division 5.6 Glass mainly focussed on glasses. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Dynamisch Mechanische Analyse KW - Dynamic mechanical analysis KW - Glas PY - 2019 AN - OPUS4-50436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Schuth, S. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Fechtelkord, M. A1 - Deubener, J. T1 - The influence of H2O and SiO2 on the structure of silicoborate glasses N2 - To understand the impact of dissolved water on structure and properties, four boron-rich glasses of molar compositions 15-x Na2O x CaO 15 SiO2 70 B2O3 (with x=0, 7.5, 10) and 10 Na2O 15 SiO2 75 B2O3 were prepared and subsequently hydrated (up to 8 wt% H2O). Density measurements show a non-linear trend upon hydration implying large structural changes in particular at water contents<2 wt%. Near-infrared spectroscopy shows hydroxyl groups are the dominant species in all glasses upon the entire range of water content. Molecular H2O is detectable only at total water contents>2 wt%. 11B MAS NMR spectra show that the abundance of BO4 species is mainly controlled by ratio of (Na2O+CaO)/B2O3 while incorporation of water plays a minor role. Compared to borate glasses, the efficiency of formation of BO4 tetrahedra is favored by crosslinking of the network by SiO4-units. The glass transition temperatures, determined by differential thermal analysis, decreases continuously with water content due to breakage of B-O-B bonds by hydrolysis. However, compared to Silicates and aluminosilicates, the effect of dissolved water is less pronounced which can be explained by weaker B-O-B bonds in comparison to Si-O-Si bonds. KW - High pressure KW - Water speciation KW - Silicoborate glasses KW - Infrared spectroscopy KW - NMR spectroscopy PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.05.030 VL - 519 SP - 38 EP - 51 PB - Elsevier B.V. AN - OPUS4-48748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Balzer, R. A1 - Deubener, J. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Density, elastic constants and indentation hardness of hydrous soda-lime silica glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. It is found that the Poisson ratio and the water content are positively correlated, while density and the elastic moduli decrease with increasing water content. Vickers hardness decreases by approximately 27% from the dry to the most hydrous glass. For water fractions <3 mol%, the dependencies are non-linear reflecting the non-linear change in the concentrations of OH and H2O molecules dissolved, whereas for water fractions >3 mol% linear dependencies are found. To distinguish the effect of structural water and environmental water, indentations were performed in toluene, nitrogen gas and air. Timedependent softening was evident for testing dry glasses in humid atmospheres as well as for tests of hydrous glasses in dry atmospheres. This indicates that the response times of dissolved water species are effectively equal in both scenarios. KW - Elastic constants KW - Soda-lime-silica KW - Glass KW - Water content KW - Microhardness PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.119480 SN - 0022-3093 SN - 1873-4812 VL - 521 SP - 119480 PB - Elsevier B.V. AN - OPUS4-48758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Poologasundarampilai, G. A1 - Brauer, D. S. T1 - Sintering and concomitant crystallization of bioactive glasses N2 - The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good Integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide Ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process. KW - Bioactive glass KW - Crystallization KW - Scaffolds KW - Sintering PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485458 SN - 2041-1286 VL - 10 IS - 4 SP - 449 EP - 462 PB - Wiley AN - OPUS4-48545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous soda-lime silicate glass N2 - Glass strength and fatigue is limited by surface cracks. As subcritical crack growth (SCCG) is governed by ambient humidity, stress corrosion at the crack tip is widely accepted to be the underlying mechanism. However, as water is known to have decisive effect on glass properties and can rapidly enter the crack tip near glass region, SCCG could be affected by such water related phenomena. We tried to mimic these effects studying water dissolution and speciation, mechanical properties, and SCCG in water-bearing glasses. For this purpose, glasses up to 8 wt% water have been prepared by means of high-pressure melting of glass powder - water mixtures. As part of this effort, SCCG in dry and hydrous commercial micros¬cope slide glass (CW = 6 wt%) was studied in double cantilever beam (DCB) geometry and sub-Tg relaxation was measured by Dynamic Mechanical Analysis (DMA). For SCCG in ambient air (24% r.h.), SCCG was promoted by the presence of 6wt% bulk water with respect to the dry glass. On the other hand, stress intensity values, KI, required to cause slow crack growth (v < 10-6 ms-1) resemble literature findings for float glass of similar composition in liquid water, which might represent the maximum possible promoting effect of ambient water on SCCG. For SCCG in vacuum (10-3 mbar), dissolved bulk water causes even more pronounced effects. Most strikingly, it strongly decreases the slope of the log v(KI)-curve, which is a measure of dissipated energy during fracture. A strong increase of sub-Tg relaxation with increasing water content was confirmed by DMA. As a consequence, slow crack growth occurs at KI values as measured in the dry glass whereas fast crack growth occurs at much larger KI than that of the dry glass. Kinks and shoulders shown by the inert log v(KI)-curve indicate that bulk water does not simply affect bulk mechanical properties. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Maiwald, M. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Automated Analysis of Slow Crack Growth in Hydrous Soda-Lime Silicate Glasses N2 - To explore the impact of ambient and structural water on static fatigue, the initiation and growth of 3279 Vickers induced median radial cracks were automatically recorded and analyzed. We find that humidity is more efficient in initiating cracks and promoting their growth than water, which is dissolved in the glass structure. In particular for slow crack growth (< 3x10-6 m s-1), tests in dry nitrogen showed a considerable decrease in the crack growth exponent with increasing water content of the glasses. On the other hand, if tests were performed in humid air, the crack growth exponent was independent of the water content of the hydrous glasses, while stress intensity decreased slightly. These observations indicate that water promotes the processes at the crack-tip regardless of its origin. However, ambient water is more efficient. KW - Indentation fracture toughness KW - Slow crack growth KW - Automated analysis KW - Hydrous glass KW - Vickers indentation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513085 VL - 7 SP - 268 AN - OPUS4-51308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509497 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506829 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. A1 - Marzok, Ulrich A1 - Reinsch, Stefan T1 - Hydrogen Permeation Through Glass N2 - Physical storage of gaseous hydrogen under high-pressure in glassy micro-containers such as spheres and capillaries is a promising concept for enhancing safety and the volumetric capacity of mobile hydrogen storage systems. As very low permeation through the container wall is required for storage of compressed hydrogen, development of glasses of minimal hydrogen permeability is needed. For this purpose, one has to understand better the dependence of hydrogen permeability on glass structure. The paper points out that minimizing the accessible free volume is as one strategy to minimize hydrogen permeability. Based on previously measured and comprehensive literature data, it is shown that permeation is independently controlled by ionic porosity and network modifier content. Thus, ionic porosity in modified and fully polymerized networks can be decreased equally to the lowest hydrogen permeability among the glasses under study. Applying this concept, a drop of up to 30,000 with respect to the permeation of hydrogen molecules through silica glass is attainable. KW - Ionic porosity KW - hydrogen storage KW - Glass KW - Permeability KW - Solubility KW - Diffusivity PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513927 VL - 6 SP - Article 342 AN - OPUS4-51392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Behrens, H T1 - Sintering and Foaming of Silicate Glass Powders N2 - The lecture focuses on the mechanisms of non-desired gas bubble formation and foaming during the sintering of glass powder compacts. It is shown that foaming is driven by carbon gases and that carbonates, encapsulated in micropores or mechaniacally dissolved beneath the glass surface, provide the major foaming source. T2 - Sandanski Workshop Sinter crystallization 27th-29th September 2021 PROJECT “THEORY AND APPLICATIONS OF SINTER-CYSTALLIZATION” DN 19/7 CY - Online meeting DA - 27.10. 2021 KW - Sintering KW - Non-desired foaming PY - 2021 AN - OPUS4-53772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X U6 - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 U6 - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531227 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 U6 - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Behrens, H. A1 - Deubener, J. T1 - Crack growth in borate and silicate glasses: Stress-corrosion susceptibility and hydrolytic resistance N2 - A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 μm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend. KW - DCB KW - Alkali and alkaline earth silicate and borate glass KW - Crack growth in air KW - Stress-corrosion KW - Stress intensity PY - 2021 U6 - https://doi.org/10.1016/j.jnoncrysol.2020.120414 VL - 551 SP - 120414 PB - Elsevier B.V. AN - OPUS4-51393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Sintering and foaming of bioactive glasses N2 - Sintering, crystallization, and foaming of 44.8SiO2–2.5P2O3–36.5CaO–6.6Na2O–6.6K2O–3.0CaF2 (F3) and 54.6SiO2–1.7P2O3–22.1CaO–6.0Na2O–7.9K2O–7.7MgO (13–93) bioactive glass powders milled in isopropanol and CO2 were studied via heating microscopy, differential thermal analysis, vacuum hot extraction (VHE), Infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. Full densification was reached in any case and followed by significant foaming. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750◦C, which hints on a thermally very stable species or mechanical trapping. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. KW - Bioactive Glass KW - Crystallization KW - Foaming KW - Sintering PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552454 SN - 0002-7820 SP - 1 EP - 11 PB - Wiley online library AN - OPUS4-55245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Maaß, Robert A1 - Deubener, J. A1 - Müller, Ralf T1 - Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data N2 - We present an easy-to-apply method to predict structural trends in the internal nucleation tendency of oxide glasses. The approach is based on calculated crystal fracture surface energies derived from easily accessible diatomic bond energy and crystal lattice data. The applicability of the method is demonstrated on literature nucleation data for isochemically crystallizing oxide glasses. KW - Glass KW - Nucleation tendency KW - Fracture surface energy KW - Crystal lattice KW - Bond energy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548814 SN - 2590-1591 VL - 14 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-54881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlasDigital - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Das Projekt GlasDigital im Rahmen der BMBF Initiative MaterialDigital wird vorgestellt. T2 - MatFo22 CY - Berlin, Germany DA - 14.11.2022 KW - Material Digital PY - 2022 AN - OPUS4-56282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Chen, Y.-F. A1 - Contreras Jaimes, A. T1 - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas (GlasDigital) N2 - Das Projekt GlasDigital wurde im allgemeinen vorgestellt, sowie die einzelnen Zwischenstände der verschiedenen Arbeitspakete aller Projektpartner präsentiert. Die allgemeine Porjektvorstellung ist auf deutsch. Die Zwischenstände der Arbeitsinhalte sind auf englisch. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 03.11.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage KW - ML KW - Ontologie KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GLAS DIGITAL - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Aktuelle Ergebnisse des Projektes GlasDigital werden kurz zusammenfassend und allgemein verständlich vorgestellt. T2 - MatFo 2022 CY - Cologne, Germany DA - 14.11.2022 KW - Oxidglas KW - robotische Glasschmelzanlage KW - Ontologie KW - ML KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559433 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Alkali and alkaline earth zinc and lead borate glasses: Sintering and crystallization N2 - Glasses in the systems Me2O-ZnO-B2O3 with Me = Li, Na, K, Rb (MeZB), Na2O-ZnO-CuO-B2O3 (NZCuB), CaO-ZnO-B2O3 (CaZB), and Li2O-PbO-B2O3 (LPbB) as a reference, were studied by differential thermal analysis, dilatometry, rotational viscometry, and heating microscopy. A decrease of viscosity and sintering range was found with decreasing number of fourfold coordinated boron. The viscosity of the alkali zinc borate glasses varies only slightly. LPbB and CaZB stand out by their reduced and increased viscosities, respectively. Sodium, potassium, and calcium zinc borate glasses possess a fragility above 76. All glasses were sintered to full density before crystallization. Mostly binary zinc borate phases govern crystallization. A ternary crystalline phase was detected only in the potassium containing sample. The Weinberg glass stability parameter ranges between 0.07 and 0.12. This is caused by the presence of several crystalline phases and varying melting points of even the same crystalline phase in different glass matrices. KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Viscosity KW - Sintering KW - Crystallization KW - Fragility PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556128 SN - 2590-1591 VL - 15 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-55612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - An overview on the effect of dissolved water on the viscosity of soda lime silicate melts N2 - In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H2Omolecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the timetemperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions. KW - Water in glass KW - Viscosity KW - Soda lime silicate glass KW - Shear thinning KW - Nydrogen melting PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587276 VL - 19 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587284 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587295 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Silicate glass fracture surface energy calculated from crystal structure and bond-energy data N2 - We present a novel method to predict the fracture surface energy, γ, of isochemically crystallizing silicate glasses using readily available crystallographic structure data of their crystalline counterpart and tabled diatomic chemical bond energies, D0. The method assumes that γ equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were in excellent agreement with those calculated from glass density, network connectivity and D0 data in earlier work. This finding demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. KW - Glass KW - Fracture surface energy KW - Toughness KW - Modeling KW - Mechanical properties PY - 2023 U6 - https://doi.org/10.1016/j.jnoncrysol.2023.122679 SN - 0022-3093 VL - 622 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-58767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheffler, Franziska A1 - Fleck, Mirjam A1 - Busch, Richard A1 - Casado, Santiago A1 - Gnecco, Enrico A1 - Tielemann, Christopher A1 - Brauer, Delia S. A1 - Müller, Ralf T1 - Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientation N2 - Controlled oriented crystallization of glass surfaces is desired for high precision applications, since the uppermost crystal layer significantly influences the properties of the material. In contrast to previous studies, the data presented here deal with separated crystals growing at defect-free surfaces in four atmospheres with different degrees of humidity (ambient/dry air, argon and vacuum). A glass with the composition 2 BaO–TiO2–2.75 SiO2 was heat-treated at 825 °C until fresnoite (Ba2TiSi2O8) grew to a significant size. The crystal growth rate is found to increase with increasing humidity. The morphology of the crystals changes from highly distorted dendrites in the driest atmosphere (vacuum) to circular/spear-head-shaped crystals in the wettest atmosphere (ambient air), which we attribute to a decrease in viscosity of the glass surface due to water uptake. The least distorted crystals appear in the form of depressions of up to 6 µm. This has an influence on the observed crystal orientation, as measured by electron backscatter diffraction (EBSD). The pulled-in crystals change the orientation during growth relative to the flat glass surface due to an enrichment in SiO2 at the crystal fronts. This confirms that the orientation of crystals is not fixed following nucleation. KW - Fresnoite KW - Surface crystallization KW - Crystal growth KW - Crystal morphology KW - Crystal orientation KW - EBSD PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587230 VL - 13 IS - 3 SP - 1 EP - 17 PB - MDPI AG CY - Basel AN - OPUS4-58723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589008 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 U6 - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -