TY - JOUR A1 - Rodrigues, A. C. P. A1 - Feller, A. A1 - Agudo Jácome, Leonardo A1 - Azevedo, C. R. F. T1 - Use of synthetic Fe3O4-rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest N2 - This work investigates the effect of the tribotesting parameters (temperature, atmosphere, and third body chemical composition) on the coefficient of friction (CoF) during pin-on-disc dry (PoD) sliding tribotests using artificial third bodies. The third body comprised nanometric Fe3O4-based binary to quaternary chemical compositions containing copper, graphite, and zirconia. These mixtures were manually or ball-milled prepared, and pin-on-disc tribotests were conducted at 23 °C and 400 °C under air or nitrogen atmospheres. Combining PoD and artificial third body to create synthetic tribofilms might be useful for testing new formulations of Cu-free friction materials. Microstructural characterisation of the tribofilms was used to study the stability of the Fe3O4, copper, and graphite nanoparticles under different testing conditions to understand their effects on the CoF. For the Fe3O4-C-ZrO2-X systems, the ball milling mixing promoted the formation of turbostratic graphite in the tribofilm, impairing the lubricating effect of the graphite under air atmosphere at 23 °C. The formation of monoclinic CuO in the tribofilms during tribotests at 400 °C under air and N2 atmospheres promoted a lubricating effect. KW - Tribology KW - Microstructure KW - Oxide KW - Transmission electron microscopy PY - 2022 U6 - https://doi.org/10.1088/2051-672X/ac9d51 SN - 2051-672X VL - 10 IS - 4 SP - 044009-1 EP - 044009-18 PB - IOP Pobilishing AN - OPUS4-56467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Suarez Ocano, Patricia T1 - Thermodynamic and microstructural stabilities at high temperatures and their effects on mechanical properties in an AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - Today’s industrial demands challenge the research and development sector to make advances in the design and properties of materials that can withstand harsh environments. The AlMo0.5NbTa0.5TiZr refractory high-entropy superalloy (RSA), with a remarkable morphological similarity to the γ/γ' microstructure of Ni-based superalloys and promising high-temperature compressive properties, has been considered as a candidate for structural applications. However, additional properties need to be investigated in order to assess the suitability of this alloy for high temperature applications. Therefore, this work investigates the thermodynamic and microstructural stabilities of the RSA at room temperature and between 900 and 1100 °C, and their influence on the mechanical properties. Although it is possible to improve the mechanical properties at 20 °C by tuning the cooling rate, long-term high temperature exposures lead to phase instabilities that negatively influence the creep behavior. N2 - Die heutigen industriellen Anforderungen erfordern Fortschritte bei Werkstoffdesign und -entwicklung, insbesondere für raue Umgebungen. Die hochentropische Refraktärsuperlegierung (RSA) AlMo0.5NbTa0.5TiZr, die eine bemerkenswerte morphologische Ähnlichkeit mit der γ/γ'-Mikrostruktur von Ni-Basis-Superlegierungen und vielversprechende Hochtemperatur-Druckeigenschaften aufweist, wurde als Kandidat für strukturelle Anwendungen erwägt. Weitere Eigenschaften müssen untersucht werden, um die Eignung dieser Legierung für Hochtemperaturanwendungen zu beurteilen. In dieser Arbeit werden die thermodynamischen und mikrostrukturellen Stabilitäten von RSA bei Raumtemperatur und zwischen 900 und 1100°C sowie deren Einfluss auf die mechanischen Eigenschaften untersucht. Obwohl es möglich ist, die mechanischen Eigenschaften bei 20 °C durch Abstimmung der Abkühlrate zu verbessern, führen langfristige Hochtemperaturexpositionen zu Phaseninstabilitäten, die das Kriechverhalten negativ beeinflussen. KW - Hochentropielegierung KW - Gefüge (Werkstoffkunde) KW - Mikrostruktur KW - Kriechen KW - Thermodynamische Stabilität KW - High entropy alloys KW - Microstructure KW - Creep KW - Thermodynamic stability PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:294-108415 SP - 1 EP - 170 CY - Bochum AN - OPUS4-59929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545906 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Suárez Ocaño, Patricia T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Müller, Ralf A1 - Körner, S. T1 - Sintering of silver-glass composites N2 - High conductive silver metallization pastes are key components in advanced electronics and photovoltaics. Increasing demands on efficiency, miniaturization and ever shorter time-to-market require tailored glass-silver-pastes. In these pastes, low-melting glasses act as a sintering aid achieving better sintering, adhesion and contact formation for solar cells. Yet, the related liquid phase sintering of silver-glass-composites and the underlying mechanism of silver dissolution, transport and reprecipitation are rarely investigated. In this study, systematically varied low melting alkaline zinc borate, alkaline earth borate, and Pb- and Bi-glasses are investigated. Glass transition and crystallization are studied with dilatometry, DTA and XRD. Sintering of the pure glasses, pure silver and silver-glass-composites is analyzed with Hot Stage Microscopy, optical and electron microscopy. Since oxygen dissolved in silver powders can affect the silver dissolution as silver oxide in the matrix oxide glasses, the O2-content of silver powders is determined by Vacuum Hot Extraction. The glass transition temperature of the glasses under study varies between 370 °C and 590 °C whereas the sinter onset largely ranges between 400 °C and 600 °C. On the other hand, it scattered between 200 °C and 450 °C for selected commercial Ag-powders of different particle size and morphology. T2 - 93rd Annual Meeting of DGG in Conjunction with the Annual Meeting of  USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Silver glass paste KW - Sintering KW - Microstructure PY - 2019 AN - OPUS4-48906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Rowolt, C. A1 - Milkereit, B. A1 - Darvishi Kamachali, Reza A1 - Kessler, O. A1 - Skrotzki, Birgit T1 - On the long-term aging of S-phase in aluminum alloy 2618A N2 - The aluminum alloy 2618A is applied for engine components such as radial compressor wheels which operate for long time at elevated temperatures. This results in coarsening of the hardening precipitates and degradation in mechanical properties during the long-term operation, which is not taken into account in the current lifetime prediction models due to the lack of quantitative microstructural and mechanical data. To address this issue, a quantitative investigation on the evolution of precipitates during long-term aging at 190 °C for up to 25,000 h was conducted. Detailed transmission electron microscopy (TEM) was combined with Brinell hardness measurements and thorough differential scanning calorimetry (DSC) experiments. The results showthat GPB zones and S-phase Al2CuMg grow up to < 1,000 h during which the GPB zones dissolve and S-phase precipitates form. For longer aging times, only S-phase precipitates coarsen, which can be well described using the Lifshitz–Slyozov Wagner theory of ripening. A thorough understanding of the underlying microstructural processes is a prerequisite to enable the integration of aging behavior into the established lifetime models for components manufactured from alloy 2618A. KW - Long-term aging KW - Transmission electron microscopy (TEM) KW - Differential scanning calorimetry (DSC) KW - Microstructure KW - S-phase KW - Ostwald ripening PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519899 SN - 0022-2461 VL - 56 IS - 14 SP - 8704 EP - 8716 PB - Springer Nature AN - OPUS4-51989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Microstructural impact on high temperature oxidation behavior of Fe-Cr-C model alloys N2 - Chromia forming high alloyed ferritic-austenitic steels are being used as boiler tube materials in biomass and coal-biomass co-fired power plants. Despite thermodynamic and kinetic boundary conditions, microstructural features such as grain orientation, grain sizes or surface deformation contribute to the oxidation resistance and formation of protective chromium-rich oxide layers. This study elucidates the impact of microstructure such as the grain size and number of carbide precipitates on high temperature oxidation at 650°C in 0.5% SO2 atmosphere. Cold-rolled Fe-16Cr-0.2C material was heat-treated to obtain two additional microstructures. After exposure to hot and reactive gases for 10 h < t < 1000 h layer thicknesses and microstructure of oxide scales are observed by scanning electron microscopy and Energy-dispersive X-ray spectroscopy. The two heat treated alloys showed reasonable oxidation resistance after 1000 h of exposure. The oxidation rate was substantially higher for the alloy with a duplex matrix after heat treatment compared to the fine-grained material. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - Corrosion KW - Microstructure KW - Oxidation KW - Sulfidation PY - 2019 AN - OPUS4-49212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -