TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Novel insights into high temperature corrosion phenomena by advanced X-ray methods N2 - A variety of materials of technological interest change their properties through contact with reactive media. Solid-gas reactions lead to a variety of reaction products on the surfaces and internal interfaces. The observation of nucleation and growth processes in the environment where they occur (in situ) from a chemical-structural perspective is especially challenging for aggressive atmospheres. The talk presents innovative approaches to study corrosion mechanisms using advanced X-ray methods. Using energy dispersive X-ray diffraction and X-ray absorption spectroscopy in different tailor made environmental reaction chambers, valuable insights into high temperature oxidation and sulfidation processes were gained. Fe-based alloys were exposed to hot and reactive atmospheres containing gases like SO2, H2O and O2 at 650°C. During the gas exposure the tailor made reaction chambers were connected to a high energy diffraction end station at the synchrotron. The crystallization and growth of oxide and sulfide reaction products at the alloy surfaces were monitored by collecting full diffraction pattern every minute. Careful examination of shape and intensity of phase-specific reflections enabled to a detailed view on growth kinetics. These studies showed, oxides are the first phases occurring immediately after experimental start. As soon as reactive gas media enter the chamber, the conditions change and different reaction products, such as sulfides start to grow. A comparison of different gas environments applied, illustrated the differences in the type of reaction products. The in situ observation of high temperature material degradation by corrosion made it possible to study the contribution of phases, which are not stable at room temperature. For instance, wuestite (Fe1-xO), was frequently observed at high temperatures in humid gases on Fe with 2 wt.% and 9 wt.% chromium, but not at room temperature. The strength of the occurrence of this phase additionally explains why, despite a higher Cr content, ferritic alloys with 9 wt.% Cr in a challenging atmosphere prevent the intrinsic formation of protective layers. The in situ observations were supplemented by careful considerations of thermodynamic boundary conditions and detailed post characterization by classical metallographic analysis. Additionally, the structure and chemistry of the dominant oxide layers were evaluated using X-ray absorption near edge structure spectroscopy. The talk will give an overview about chances and challenges for studying high temperature corrosion phenomena by advanced X-ray methods. T2 - MRS Spring Meeting CT08.02.01 CY - Online Meeting DA - 18.04.2021 KW - XRD KW - Spectroscopy KW - Corrosion KW - High temperature KW - In-situ PY - 2021 AN - OPUS4-52486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Materialschädigung durch Hochtemperaturkorrosion von koventionellen und innovativen Legierungssystemen N2 - Konventionelle und innovative Hochtemperaturwerkstoffe sind im technischen Betrieb einer Vielzahl an Belastungen ausgesetzt. Neben mechanischen Beanspruchungen stellt die chemische Belastung durch das Vorhandensein von aggressiven und korrosiven Medien (SO2, CO2, O2, H2O…) bei hoher Temperatur einen Schlüsselfaktor dar, der die Langlebigkeit der Materialien im Einsatz beeinflusst. Neben konventionellen, mikroskopischen Analyseverfahren bieten röntgenbasierte Techniken Möglichkeiten, die Grenzflächenreaktionen zwischen dem Werkstoff und den Medien während der chemischen Belastung (in situ) zu untersuchen. Neuartige Einblicke in die zugrunde liegenden Prozesse der Schädigungsmechanismen werden anhand von klassischen ferritischen Legierungen beschrieben. Das Verständnis von Schlüsselfaktoren zur Induzierung eines Schutzmechanismus ist insbesondere für die Entwicklung von neuartigen Materialklassen wie Hochentropie- und chemisch komplexe Legierungen notwendig. Erste Einblicke in Schädigungsmechanismen durch Gaskorrosion dieser innovativen Materialsysteme werden vorgestellt. T2 - AWT-VDI Werkstofftechnik Arbeitskreis Bremen CY - Leibnitz Institut für Werkstofforientierte Technologien, Germany DA - 27.11.2019 KW - In situ KW - Heißgaskorrosion KW - Hochentropielegierungen KW - XRD PY - 2019 AN - OPUS4-49844 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Falk, Florian A1 - Lehmusto, J. A1 - Sobol, Oded A1 - Pint, B. T1 - Elucidation of competitive oxidation/sulfidation reactions on binary ferritic alloys N2 - Ferritic-austenitic chromia-forming alloys are frequently used as boiler tubes and heat exchanger materials for fossil-,biomass, and co-fired power plants. In all applied environments several strongly corrosive gaseous species such as CO2, SO2, SO3, H2O, O2 exist, causing materials degradation by high-temperature corrosion. The elucidation of degradation mechanisms introduced by multiple gases is challenging due to the presence of different oxidizing agents contributing to the competing reactions for oxidation, sulfurization or carburization. The degradation processes can be divided into initial stages, a transitional stage and the further proceeding steady-state oxidation reaction. Especially the long-term steady-state oxidation and further materials’ life-time are strongly dependent on the initial stages. The adsorption and absorption of the reactive species at the alloy surface and the growing oxide in the initial reaction is further influenced by dissociation and re-reactions of the gas phase molecules. To understand these mechanisms from a fundamental point of view in more detail, dedicated experiments and advanced characterization techniques on various length scale need to be applied. Real-time approaches using highly energetic synchrotron X-ray diffraction showed a high potential to enlighten competitively mechanisms by following the corrosion reactions in-situ in the environment they occur. Despite various other thin film characterization techniques, time of flight secondary ion mass spectroscopy (ToF-SIMS) is a powerful tool to visualize light atoms or labeled isotopes enabling the Differentiation between different oxidizing species. It was especially shown to be applicable in challenging atmospheres containing KCl deposits or in CO/CO2/O2 environments. The present study analyses the competing oxidation/sulfidation process in a humid atmosphere on two ferritic alloys with 2 and 9 % in weight chromium by in situ energy dispersive X-ray diffraction (EDXRD) and comparative tube furnace exposure using S16O2 and H2 18O atmosphere. T2 - Conference on High Temperature Corrosion and Protection of Materials HTCPM 2021 CY - Online Meeting DA - 29.03.2021 KW - Oxidation KW - High Temperature Corrosion KW - Ferritic Alloys KW - SIMS KW - EDXRD PY - 2021 AN - OPUS4-52363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Schulz, Wencke A1 - Karafiludis, Stephanos A1 - Schneider, Mike A1 - Laplanche, Guillaume T1 - Effect of a mixed atmosphere H2O-O2-SO2 on the oxidation kinetics and phase formation on CrMnFeCoNi and CrCoNi N2 - The high-entropy alloy (HEA) CrMnFeCoNi and the medium-entropy alloy (MEA) CrCoNi with a face-centered cubic (fcc) structure have excellent mechanical properties and are considered for high-temperature applications. Both materials were exposed under several oxidized atmospheres in a wide temperature range/regime. Mn-oxide (Mn3O4, Mn2O3) was mainly formed on the HEA and Cr2O3 on the MEA. The fast diffusion of manganese prevents the formation of a continuous chromia layer on CrMnFeCoNi in Ar-O2, Ar-H2O and Ar-SO2 at 800°C. The Cantor alloy and his ternary subsystem CrCoNi were exposed in Ar-O2-H2O-SO2 at 800°C up to 96 h to clarify their oxidation behavior in a mixed atmosphere. The oxidized samples were analyzed by weight measurement, scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). It was found that mass gain of all samples increased with increasing exposure time. The oxidation rate of the Cantor alloy is significantly higher than that of the ternary alloy system. T2 - International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloys KW - Medium Entropy Alloys KW - High temperature corrosion KW - Oxidation KW - Sulfidation PY - 2020 AN - OPUS4-51488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -