TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Böhning, Martin A1 - Niebergall, Ute T1 - PE-HD as a polymeric fuel storage tank material: Photooxidation, fuel sorption and long-term storage N2 - High-density polyethylene (PE-HD) is a commodity thermoplastic polymer which is typically used for packing of dangerous goods. Its good resistance against photooxidation, fuels, chemicals and other environmental factors in addition to low production costs makes PE-HD attractive for fuel storage applications. Typical engine fuels stored in polymer tanks are petrol, diesel and biodiesel that receives increasing attention as proper alternative to fossil fuels. One of the major problems with biodiesel is its susceptibility to oxidize due to its chemical composition of unsaturated fatty acids which also can cause polymer degradation. The aim of this study is to investigate the influence of different environmental factors, UV radiation and commonly stored fuels, on the mechanical, physical and chemical properties of two types of PE-HD polymers (stabilized and non-stabilized). The influence on the mechanical properties was tested by Charpy and tensile tests, chemical and physical properties were evaluated by Fourier-transform infrared spectroscopy (FTIR) and by dynamical mechanical analysis (DMA) tests. Samples were characterized after varying exposure time of UV radiation and after fully and partially immersion in biodiesel. In addition, similar experiments were conducted using diesel for comparison. T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Biodiesel KW - UV-irradiation KW - Long-term storage KW - Diesel PY - 2018 AN - OPUS4-45894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Koerdt, Andrea T1 - Initial attachment of bacteria on PE-HD by fluorescence microscopy and colony-forming unit N2 - The first documentation of fuel biodeterioration dates back to the late 19th century. However, extensive studies concerning the microbial fuel contamination started in 1980’s. Polymeric fuel storage tanks containing diesel and biodiesel provide environmental conditions for microbial growth. Several studies demonstrated that bacteria, which were found in contaminated fuel systems, can use fuels as macronutrient; but such bacteria can also cause microbiologically influenced corrosion and fouling. The aim of this study is to investigate the initial attachment behavior of bacteria, isolated from a diesel contamination, on neat and photooxidized high-density polyethylene (PE-HD). Two common PE-HD’s, less- and biodiesel-stabilized, were radiated to UV light representing a tank exposed to sunlight. The effect of photooxidiation on PE-HD’s surface were characterized chemically by Fourier-transform infrared spectroscopy (FTIR). The attached bacteria Pseudomonas aeruginosa and Bacillus subtilis on the polymer surface were evaluated by fluorescence microscopy and colony-forming unit tests (CFU). T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Initial attachment KW - UV-irradiation PY - 2018 AN - OPUS4-45893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 U6 - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 U6 - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Knauer, S A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Jaeger, P A1 - Schulz, S T1 - Impact of acid condensation on wetting and corrosion behavior of CO2 transport-pipeline steel N2 - Es ist allgemein akzeptiert, das Korrosion in CO2-Transport-Pipelines vernach¬lässigbar ist, solange der Wassergehalt des CO2-Stroms deutlich unter der maximal löslichen Menge liegt. Bisher gibt es keinen allgemeinen Konsens darüber, welcher maximale Wassergehalt in zu transportierendem CO2 zugelassen werden sollte. Bei einem Druck von 100 bar und im Temperaturbereich von 277 K bis 298 K beträgt die Löslichkeit von Wasser in CO2 ca. 1.900 bis 3.200 ppmv, aber die Korrosionsrate von Stählen steigt schon ab einem Wassergehalt von 500 ppmv deutlich an. Bei Anwesenheit von Begleitstoffen wie SO2, NO2 und O2, können sich HNO3, H2SO3 und H2SO4 bilden. Menge und Zusammensetzung von kondensierter Säure sind von der Gaszusammensetzung abhängig, und der Korrosionsmechanismus und die Korrosionsform sind vom Kondensationsverhalten abhängig. T2 - CLUSTER Symposium: CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-46907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 SP - 1 EP - 4 PB - EFC CY - Krakau, Poland AN - OPUS4-46291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. Furthermore, to reveal the possible protective performance of FeCO3, the pipeline steels were pre-carbonated and then tested in the same condition as freshly polished specimens. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 AN - OPUS4-46279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Jaeger, P A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels in simulated oxyfuel flue gas N2 - The research focus of this study was set on the corrosion process of condensate as droplets on the surface of carbon steels (X52, X70) martensitic steel UNS S41500, and super austenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the offshore transportation condition in a buried pipeline). The possibility of dew/droplet formation on the steel surface and wetting behavior of corresponding materials were evaluated by contact angle measurement in dense CO2 at 278 K. To observe the effect of impurities (SO2 and O2) on droplet corrosion process, exposure tests were carried out in the mixed atmosphere with a drop, 1 ‑ 10 µL in volume, of CO2 saturated ultra-pure water on steel surface. Comparable exposure tests were carried out with the same gas mixture and the same volume of water, as vapor, to observe the droplet formation and the corrosion process that follows. Effects of surface roughness on the droplet formation and its corrosion process were further studied and showed no significant role upon long time exposure. The results from droplet experiments were compared to those from the bulk electrolyte for the further recommendation on the quality control of gas stream along with the use of carbon steels as transport pipelines in CCS - Carbon Capture and Storage system. KW - CCUS, supercritical/dense phase CO2, carbon steels, martensitic steel, superaustenite steel, droplet corrosion PY - 2018 UR - http://corrosionjournal.com/doi/abs/10.5006/2927 U6 - https://doi.org/10.5006/2927 SN - 0010-9312 SN - 1938-159X VL - 74 IS - 12 SP - 1406 EP - 1420 PB - NACE International CY - Houston, Texas, USA AN - OPUS4-46903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - This work examined the droplet corrosion of CO2 pipeline steels caused by impurities in CO2 supercritical/dense phase at 278 K, simulating the underground transport condition. The wetting properties of carbon steels (X52 and X70) as well as martensitic steel UNS S41500, and superaustenite UNS N08031 were studied by contact angle measurement, revealing reactive wetting behavior of carbon steels. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal coupons in supercritical/dense phase condition, forming the corrosion product instantly during pumping process. Due to the active wetting behavior, the carbon steels suffered from heavily attack, while negligible corrosion product was observed in cases of martensitic steel UNS S41500 and superaustenite UNS 08031 coupons. Condensation experiments that were carried out on fresh polished coupons in CO2 with 1200 ppmv H2O showed that the formation and aggregation of droplet is dependent on the presence of impurities. Without SO2 and O2, the same concentration of H2O did not cause observable corrosion process after a week of exposure. With 220 ppmv SO2 and 6700 ppmv O2 even low water concentration (5-30 ppmv) still resulted in heterogeneous nucleation and subsequent growth of droplets, leading to corrosive process on carbon steel surface albeit to a lesser extent. T2 - CORROSION 2018 CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 SP - Paper 10845, 1 EP - 11 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-44798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -