TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial identification of powders N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming (SEM, TEM). Within the European project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nano-/non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The correct identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions of the particles. For particles containing micro-pores or having a microporous coating false positive results will be produced. Furthermore, broad particle size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and to improve this good available and agglomeration tolerant method. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - VSSA KW - Nanomaterial screening KW - Nano-powder characterization PY - 2018 AN - OPUS4-45099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, Nikolai A1 - Milkin, P. A1 - Evdokimov, P A1 - Putlayev, V. A1 - Günster, Jens A1 - Nicolaides, Dagmar T1 - Bioceramics from Ca3(PO4)2 - CaKPO4 - CaNaPO4 system for bone replacement and grafting N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductivity/osteoinductivity. Nowadays, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widespread ceramics for bone grafting at the market, however, their resorption is reported, in some cases, to be not enough. This is why the search for more soluble ceramics compared to HA and TCP looks rather viable. A possible way to increase ceramics solubility leads to partial substitution of Ca2+-ions in Ca3(PO4)2 by alkali castions, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy, but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making study of sintering of aforementioned ceramics highly important. T2 - Biomaterials and Novel Technologies for Healthcare, 2nd International Biennial Conference BioMaH CY - Frascati (Rome), Italy DA - 08.10.2018 KW - Bio Ceramics KW - Bioresorbable PY - 2018 AN - OPUS4-46035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Crack identification by data fusion in fatigued flat specimens with through-holes - A feasibility study N2 - A numerical pre-study has shown that cracks in a flat sample featuring a drilled hole can be classified into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Fatigue 2018 CY - Poitiers, France DA - 27.05.2018 KW - LCF KW - Crack KW - Data Fusion PY - 2018 AN - OPUS4-45936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.G. A1 - Ricking, M. A1 - Kober, E. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detektion von Polymeren im Abwasser eines Klärwerks mittels TED-GC_MS N2 - In den Umweltmedien Wasser, Boden und Luft wird Mikroplastik (MP) gefunden. Mögliche Eintragspfade, besonders Einträge über den Klarlauf kommunaler Klärwerke, sind unklar. Dazu wurde das Klärwerk Ruhleben in Berlin an jeweils vier Tagen im Sommer- und Winterbetrieb beprobt. Es wurde jeweils 1 m3 Klarlauf fraktioniert filtriert (500, 100 und 50 µm Siebe). Weiterhin wurde Rohabwasser exemplarisch untersucht. Als Analyse-methoden wurden die TED-GC-MS und die FTIR Mikroskopie verwendet. Bei der TED-GC-MS wird die Probe zunächst thermisch extrahiert, bevor die charakteristischen Zersetzungsgase mittels einer GC-Säule getrennt und im MS detektiert werden [1,2]. Es ist hier erstmals gelungen, nicht nur das MP zu identi-fizieren, sondern auch eine Massenbilanz zu erstellen und so eine quantitative Auswertung vorzunehmen. Es wurde PE, PS ganzjährig und PP im Sommer gefunden. Das Klärwerk Ruhleben hat einen Rückhalt an MP von 99%. T2 - Wasser 2018 CY - Papenburg, Germany DA - 07.05.2018 KW - Mikroplastik KW - Abwasser KW - TED-GC-MS KW - Bilanzierung PY - 2018 AN - OPUS4-44889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, Christiane T1 - Early oxidation and sulfidation of high temperature model alloys: An EDXRD in situ study N2 - The fundamental impact of sulfur and water on corrosion rates and potential failure of the exposed material is well known. However, the access to the related corrosion mechanism causing material degradation is often a problem to solve. This study investigates the effect of SO2 and water vapor in the initial stages of corrosion of an Fe9Cr0.5Mn model alloy at 650 °C in situ. The analysis was carried out under laboratory conditions using energy-dispersive X-ray diffraction (EDXRD). T2 - Dechema EFC Workshop CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Sulfidation KW - Model alloy KW - Oxidation PY - 2018 AN - OPUS4-46134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -