TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 U6 - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Novel insights into high temperature corrosion phenomena by advanced X-ray methods N2 - A variety of materials of technological interest change their properties through contact with reactive media. Solid-gas reactions lead to a variety of reaction products on the surfaces and internal interfaces. The observation of nucleation and growth processes in the environment where they occur (in situ) from a chemical-structural perspective is especially challenging for aggressive atmospheres. The talk presents innovative approaches to study corrosion mechanisms using advanced X-ray methods. Using energy dispersive X-ray diffraction and X-ray absorption spectroscopy in different tailor made environmental reaction chambers, valuable insights into high temperature oxidation and sulfidation processes were gained. Fe-based alloys were exposed to hot and reactive atmospheres containing gases like SO2, H2O and O2 at 650°C. During the gas exposure the tailor made reaction chambers were connected to a high energy diffraction end station at the synchrotron. The crystallization and growth of oxide and sulfide reaction products at the alloy surfaces were monitored by collecting full diffraction pattern every minute. Careful examination of shape and intensity of phase-specific reflections enabled to a detailed view on growth kinetics. These studies showed, oxides are the first phases occurring immediately after experimental start. As soon as reactive gas media enter the chamber, the conditions change and different reaction products, such as sulfides start to grow. A comparison of different gas environments applied, illustrated the differences in the type of reaction products. The in situ observation of high temperature material degradation by corrosion made it possible to study the contribution of phases, which are not stable at room temperature. For instance, wuestite (Fe1-xO), was frequently observed at high temperatures in humid gases on Fe with 2 wt.% and 9 wt.% chromium, but not at room temperature. The strength of the occurrence of this phase additionally explains why, despite a higher Cr content, ferritic alloys with 9 wt.% Cr in a challenging atmosphere prevent the intrinsic formation of protective layers. The in situ observations were supplemented by careful considerations of thermodynamic boundary conditions and detailed post characterization by classical metallographic analysis. Additionally, the structure and chemistry of the dominant oxide layers were evaluated using X-ray absorption near edge structure spectroscopy. The talk will give an overview about chances and challenges for studying high temperature corrosion phenomena by advanced X-ray methods. T2 - MRS Spring Meeting CT08.02.01 CY - Online Meeting DA - 18.04.2021 KW - XRD KW - Spectroscopy KW - Corrosion KW - High temperature KW - In-situ PY - 2021 AN - OPUS4-52486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 N2 - Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmv of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. To reveal the mechanism of droplet corrosion in dense phase CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this study, effects of surface morphology were investigated by varying surface roughness of carbon steel coupons exposed to CO2 stream containing impurities to measure the wettability by contact angle and to observe the condensation as well as possible droplet corrosion that followed. Other considered factors were: pH of the droplet, temperature, droplet volume, and exposure time. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - CCUS KW - Dense phase KW - CO2 KW - Droplet KW - Corrosion KW - Condensation KW - Carbon steel PY - 2019 SP - 13017-1 EP - 13017-13 PB - NACE International CY - Houston AN - OPUS4-47915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545700 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543495 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525551 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531391 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554801 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -