TY - JOUR A1 - Gesell, Stephan A1 - Ganesh, R. A1 - Fedelich, Bernard A1 - Kuna, M. A1 - Kiefer, B. T1 - Numerical calculation of 𝛥CTOD to simulate fatigue crack growth under large scale viscoplastic deformations N2 - Crack propagation under low cycle fatigue and thermomechanical fatigue is characterized by high plastic and creep strains that extend over large regions around the crack, so that concepts of linear-elastic fracture mechanics cannot be applied. In these cases, the cyclic crack tip opening displacement 𝛥CTOD is a promising loading parameter to quantify crack growth. In this work, suitable definitions and Finite Element techniques are investigated and compared for an accurate calculation of 𝛥CTOD under cyclic mechanical and/or thermal loading. A viscoplastic temperature dependent material model of Chaboche-type is used along with large strain settings, specified for the austenitic cast iron Ni-resist. Extensive two-dimensional analyses of Single Edge Notch Tension specimens revealed that collapsed special crack tip elements are superior compared with commonly used regular quadrilateral 8-node elements. At the same level of accuracy of 𝛥CTOD, they require an about ten times coarser mesh and show less sensitivity w.r.t. element size for both stationary and propagating cracks. In order to simulate fatigue crack growth, an efficient, fully automated FE-technique is developed for an incremental crack propagation by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and 𝛥CTOD value. KW - Crack tip opening displacement KW - Finite element analysis KW - Crack growth KW - Low cycle fatigue PY - 2023 U6 - https://doi.org/10.1016/j.engfracmech.2023.109064 VL - 281 IS - 109064 SP - 1 EP - 23 PB - Elsevier Ltd. AN - OPUS4-56857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -