TY - JOUR A1 - Ginés-Palomares, Juan Carlos A1 - Fateri, Miranda A1 - Kalhöfer, Eckhard A1 - Schubert, Tim A1 - Meyer, Lena A1 - Kolsch, Nico A1 - Brandic Lipinska, Monica A1 - Davenport, Robert A1 - Imhof, Barbara A1 - Waclavicek, René A1 - Sperl, Matthias A1 - Makaya, Advenit A1 - Günster, Jens T1 - Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon N2 - The next steps for the expansion of the human presence in the solar system will be taken on the Moon. However, due to the low lunar gravity, the suspended dust generated when lunar rovers move across the lunar soil is a significant risk for lunar missions as it can affect the systems of the exploration vehicles. One solution to mitigate this problem is the construction of roads and landing pads on the Moon. In addition, to increase the sustainability of future lunar missions, in-situ resource utilization (ISRU) techniques must be developed. In this paper, the use of concentrated light for paving on the Moon by melting the lunar regolith is investigated. As a substitute of the concentrated sunlight, a high-power CO2 laser is used in the experiments. With this set-up, a maximum laser spot diameter of 100 mm can be achieved, which translates in high thicknesses of the consolidated layers. Furthermore, the lunar regolith simulant EAC-1A is used as a substitute of the actual lunar soil. At the end of the study, large samples (approximately 250 × 250 mm) with interlocking capabilities were fabricated by melting the lunar simulant with the laser directly on the powder bed. Large areas of lunar soil can be covered with these samples and serve as roads and landing pads, decreasing the propagation of lunar dust. These manufactured samples were analysed regarding their ineralogical composition, internal structure and mechanical properties. KW - Regolith KW - ISRU KW - Moon KW - Laser KW - Additive manufacturing PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585985 SN - 2045-2322 VL - 13 SP - 1 EP - 10 PB - Springer AN - OPUS4-58598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Darvishi Kamachali, Reza T1 - Mean-field modeling and phase-field simulation of grain growth under directional driving forces N2 - Directional grain growth is a common phenomenon in the synthetic and natural evolution of various polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense, localized energy deposition, are prominent examples of when directional grain growth can occur, beneath the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as well as various cross-sections perpendicular to the direction of the driving force. We found that although the directional growth significantly deviates from normal grain growth, it is still governed by a power law relation α tⁿ with an exponent n ~ 0.6–0.7. The exponent n exhibits a nontrivial dependence on the magnitude of the directional driving force, such that the lowest growth exponent is observed for intermediate driving forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve out of balance under the influence of the directional driving force. With increasing the driving forces, the growth exponent asymptotically approaches a value of n ≈ 0.63, imposed by the largest possible grain aspect ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave the way for future exploration in broader contexts such as the evolution of complex additively manufactured microstructures. KW - Additive manufacturing KW - Phase-field simulation KW - Grain growth KW - Mean-field modelling KW - Directional grain growth PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593210 SN - 2589-1529 VL - 33 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-59321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -