TY - JOUR A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ontopanel: A Tool for Domain Experts Facilitating Visual Ontology Development and Mapping for FAIR Data Sharing in Materials Testing JF - Integrating Materials and Manufacturing Innovation N2 - In recent years, the design and development of materials are strongly interconnected with the development of digital technologies. In this respect, efficient data management is the building block of material digitization and, in the field of materials science and engineering (MSE), effective solutions for data standardization and sharing of different digital resources are needed. Therefore, ontologies are applied that represent a map of MSE concepts and relationships between them. Among different ontology development approaches, graphical editing based on standard conceptual modeling languages is increasingly used due to its intuitiveness and simplicity. This approach is also adopted by the Materials-open-Laboratory project (Mat-o-Lab), which aims to develop domain ontologies and method graphs in accordance with testing standards in the field of MSE. To suit the actual demands of domain experts in the project, Ontopanel was created as a plugin for the popular open-source graphical editor diagrams.net to enable graphical ontology editing. It includes a set of pipeline tools to foster ontology development in diagrams.net, comprising imports and reusage of ontologies, converting diagrams to Web Ontology Language (OWL), verifying diagrams using OWL rules, and mapping data. It reduces learning costs by eliminating the need for domain experts to switch between various tools. Brinell hardness testing is chosen in this study as a use case to demonstrate the utilization of Ontopanel. KW - Materials Testing KW - Ontology KW - Visual ontology development KW - Data mapping KW - FAIR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560339 DO - https://doi.org/10.1007/s40192-022-00279-y SP - 1 EP - 12 PB - Springer AN - OPUS4-56033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Aluminium high temperature fatigue T2 - Tagungsband der FVV-Informationstagung - Frühjahrstagung 2022 - Würzburg N2 - The studied aluminium alloy is EN AW-2618A (2618A). It is very widely used for exhaust gas turbo-charger compressor wheels. Due to long operating times, high cycle fatigue (HCF) and material aging under the influence of temperatures up to 230 °C is particularly relevant for the wheels. The wheels are typically milled from round wrought blanks. From such round blanks, different testpieces are extracted and a comprehensive series of HCF tests is conducted at room temperature. The tests investigate the materials fatigue performance in the T61 state for two load-ratios, namely R = -1 and R = 0.1. Additionally, two overaged material states are tested, accounting for the aging process the material undergoes during long operating times at high temperatures. The experimental results are evaluated and compared to each other. Furthermore, the design process of notched specimens is presented. With the notched specimens, it is aimed to quantify the notch sensitivity of the material. Relating thereto, two potential model parameters for the fatigue lifetime model are introduced. Finally, the extended research data management in this project is highlighted and its advantages for sustainable use in material science and engineering applications are shown. N2 - In diesem Projekt wird die Aluminiumlegierung EN AW-2618A (2618A) untersucht, welche sehr verbreitet in Verdichterrädern von Abgasturboladern zum Einsatz kommt. Hochzyklische Ermüdung und Werkstoffalterung bei Temperaturen von bis zu 230 °C ist bei Abgasturboladern aufgrund der langen Einsatzzeiten besonders relevant. Die Verdichterräder werden typischerweise aus geschmiedeten Rohlingen gefräst. Aus entsprechenden Rohlingen werden im Rahmen des Projekts eine Vielzahl von Proben mit unterschiedlichen Geometrien entnommen. Die Proben werden unter verschiedenen Prüfbedingungen in hochzyklischen Ermüdungsversuchen bei Raumtemperatur getestet. Zum einen wird das Ermüdungsverhalten des Werkstoffs im T61-Zustand für die zwei Belastungsverhältnisse R = -1 und R = 0,1 untersucht. Zum anderen werden zwei überalterte Materialzustände getestet. Damit soll dem Alterungsprozess Rechnung getragen werden, den das Material während langer Betriebszeiten bei hohen Temperaturen durchläuft. Die experimentellen Ergebnisse werden evaluiert und miteinander verglichen. Darüber hinaus wird der Entwurfsprozess von gekerbten Probengeometrien dokumentiert. Die gekerbten Proben sollen Aufschluss über die Kerbempfindlichkeit des Werkstoffs geben. In diesem Zusammenhang werden zwei mögliche Modellparameter für das zu entwickelnde Lebensdauermodell vorgestellt. Abschließend wird das erweiterte Forschungsdatenmanagement des Projekts beleuchtet und seine Vorteile für die nachhaltige Nutzung in materialwissenschaftlichen und ingenieurtechnischen Anwendungen aufgezeigt. T2 - FVV Frühjahrstagung 2022 CY - Würzburg, Germany DA - 31.03.2022 KW - EN AW-2618A KW - High cycle fatigue KW - Aluminium alloy PY - 2022 IS - FVV Publikationen Heft R602 SP - 617 EP - 634 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-54622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Brinell-Hardness data (HBW 2.5/62.5) of aluminum alloy EN AW-2618A after different aging times and temperatures JF - Data in Brief N2 - The article covers data on the Brinell hardness of the forged precipitation-hardened aluminum alloy EN AW-2618A in the initial T61 condition (i. e. slightly underaged) and after isothermal aging for up to 25,0 0 0 h at aging temperatures between 160 °C and 350 °C. In addition, the hardness was determined on specimens after creep testing at 190 °C and various stresses. The hardness decreases with increasing ag- ing time due to the microstructural evolution of the harden- ing precipitates. The drop occurs faster the higher the aging temperature. Aging under creep load additionally accelerates the hardness decrease. KW - Aluminum alloy KW - EN AW-2618A KW - Brinell hardness KW - Aging KW - Creep KW - Ostwald ripening KW - Reheating PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567611 DO - https://doi.org/10.1016/j.dib.2022.108830 SN - 2352-3409 VL - 46 PB - Elsevier Inc. AN - OPUS4-56761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C T2 - Proceedings of the International Conference on Aluminium Alloys 16 N2 - A short description of the work done on the topic "Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C" is given. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Degradation KW - Aluminium KW - Creep KW - Coarsening PY - 2018 SN - 978-1-926872-41-4 SP - 99 AN - OPUS4-45284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep JF - Materials Science & Engineering A N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of precipitation coarsening in alloy 2618A for the lifetime assessment of radial compressor wheels T2 - Microscopy Conference 2019 (MC2019) - Proceedings N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Aluminium KW - Digital material representation KW - Transmission electron microscopy KW - Material degradation PY - 2019 SP - 183 EP - 184 AN - OPUS4-48885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Assessment of EN AW-2618A for high temperature applications considering aging effects N2 - The alloy EN AW-2618A was assessed regarding its properties for high temperature applications considering aging effects. T2 - BAM TMF-Workshop 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron microscopy (DFTEM) PY - 2019 AN - OPUS4-49808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials JF - MTZ Worldwide N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 DO - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Fliegener, S. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. T1 - PMD Core Ontology (PMDco) N2 - The PMD Core Ontology (PMDco) is a comprehensive framework for representing knowledge that encompasses fundamental concepts from the domains of materials science and engineering (MSE). The PMDco has been designed as a mid-level ontology to establish a connection between specific MSE application ontologies and the domain neutral concepts found in established top-level ontologies. The primary goal of the PMDco is to promote interoperability between diverse domains. PMDco's class structure is both understandable and extensible, making it an efficient tool for organizing MSE knowledge. It serves as a semantic intermediate layer that unifies MSE knowledge representations, enabling data and metadata to be systematically integrated on key terms within the MSE domain. With PMDco, it is possible to seamlessly trace data generation. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the generation, derivation, and attribution of resources. By building on this foundation, PMDco facilitates the integration of data from various sources and the creation of complex workflows. In summary, PMDco is a valuable tool for researchers and practitioners in the MSE domains. It provides a common language for representing and sharing knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless traceability of data generation. Overall, PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain. PMDco at GitHub: https://github.com/materialdigital/core-ontology KW - Ontology KW - Semantic Web technologies KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2023 UR - https://github.com/materialdigital/core-ontology/blob/f2bd420348b276583fad6fa0fb4225f17b893c78/pmd_core.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -