TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Chen, Yue A1 - Hanke, T. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Domain-level ontology formulation based on the Platform Material Digital (PMD) ontology: case study Brinell hardness N2 - A large amount of publicly available data is reproduced every day in the field of materials science, while these kind of material data can have different formats and types like paper-type publications, standards, datasheets or isolated datasets in repositories. However, gathering a specific library from such extensive and diverse material data is always challenging for the materials scientists and engineers, since the time-related limitations are not allowed to fully access the large publicly available databases; search across these disparate databases, manage the large volumes of heterogeneous datasets, and integrate data from multiple sources. To address these challenges and make data findable, accessible, interoperable, and reusable (FAIR), an efficient data management system is necessary to build comprehensive, documented, and connected data spaces in the future. A formal standardized knowledge representation through an ontology can address such problems and make data more available and interoperable between related domains. Ontology can also rich machine processable semantic descriptions that increases the performance of scientific searches. In this regard, the Platform MaterialDigital (PMD) is currently working on developing a high-level ontology for the materials and material related processes. For example, in one of the PMD projects of “KupferDigital”, we will try to develop a data ecosystem for digital materials research based on ontology-based digital representations of copper and copper alloys. As a case study, this paper describes the methodology for ontology development of Brinell hardness, based on PMD core ontology. The methodology we describe includes the following steps; gathering the required domain terminology from different resources like standards (DIN EN ISO 6506-1) and test reports, representing the performance of a standard-conformant hardness test and the treatment of the recorded values up to a “reportable” hardness value for a material, designing the process chain according to the semantic technologies, and developing a domain-level ontology of Brinell hardness based on PMD ontology semantic formalization. Apart the mentioned methodology, some interesting tools and methods were introduced and ontology design challenges and possible solutions for modelling materials and processes were discussed. Furthermore, a dataset from the Brinell hardness measurement of cast copper samples is prepared for testing the query process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Copper KW - Materials Science KW - Ontology KW - Platform MaterialDigital (PMD) KW - Brinell hardness PY - 2022 AN - OPUS4-56092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenbart, M. A1 - Bauer, F. A1 - Klotz, U. A1 - Weber, M. A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Klengel, R. A1 - Steinmeier, L. A1 - Parvez, A. A1 - Hanke, T. A1 - Dziwis, G. A1 - Meissner, R. A1 - Tikana, L. A1 - Heisterkamp, J. T1 - Development of an ontology for the lifecycle of copper and copper alloys N2 - Efforts towards digitalization in the material science and technology community have enhanced in the last years. In 2019 the German digitalization initiative platform „MaterialDigital“1 (MD) has been started. Numerous projects concerning digitalization, including the copper related project „KupferDigital“ (copper digital) have been initiated under the umbrella of MD. The initiative strives to address numerous issues concerning data access, exchange, security, provenance and sovereignty. Heterogeneous data origin, storage and evaluation often result in problems concerning comparability and reproducibility of scientific and technological results. In many cases material data are recorded, but the methods of testing are insufficiently described, or such information is not communicated along with the raw data. The material data can also have numerous different formats such as paper printouts, pdfs, excel sheets or csv-files. Hence, gathering and integrating material data from different sources is challenging for potential users like materials scientists and engineers, especially if there are contradictory data where the reasons for contradictions is not clear due their vague description. In order to address these problems, data should comply to the so called „FAIR“ principle which calls for data to be findable, accessible, interoperable, and reusable (FAIR)2 and hence be accessible via so-called decentralized but interconnected data spaces. By using knowledge representation withontologies, data can be enriched with meaning and the methods of the testing procedures can be accurately provided. In this presentation we want to introduce our approach to such knowledge representation based on a high-throughput alloy development process for Cu-based alloys³ along with characterization techniques such as hardness testing and microstructural characterization (e.g. EBSD – Electron Backscattered Diffraction). T2 - Copper Alloys Conference CY - Dusseldorf, Germany DA - 22.11.2022 KW - Copper KW - Life cycle KW - Ontology PY - 2022 AN - OPUS4-56406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test Ontology used in Platform Material Digital (PMD) N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) is supposed to contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts within the joint project PMD in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. Furthermore, the presentation includes a live demonstration of queries possibly performed to query data that was uploaded in the PMD triple store. T2 - Online Workshop: An introduction to the semantic web and ontologies CY - Online meeting DA - 23.04.2021 KW - Ontology KW - Tensile Test KW - Platform Material Digital KW - PMD KW - Knowledge Graphs KW - Semantic Web PY - 2021 AN - OPUS4-52949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Huschka, M. A1 - Olbricht, Jürgen A1 - Pirskawetz, Stephan A1 - Skrotzki, Birgit A1 - Hanke, T. A1 - Todor, A. T1 - Ontopanel: a diagrams.net plugin for graphical semantic modelling N2 - Ontologies that represent a map of the concepts and relationships between them, are becoming an effective solution for data standardization and integration of different resources in the field of materials science, as efficient data storage and management is the building block of material digitization. However, building a domain ontology is not a simple task. It requires not only a collaborative effort between ontologists and domain experts, but also the modeling approaches and tools play a key role in the process. Among all approaches, graphical representation of domain ontologies based on standard conceptual modeling languages is widely used because of its intuitiveness and simplicity. Various tools have been developed to realize this approach in an intuitive way, such as Protégé plugins and web visualization tools. The Materials-open-Lab (MatOLab) project, which aims to develop ontologies and workflows in accordance with testing standards for the materials science and engineering domains, adopted a UML (Unified Modeling Language) approach based on the diagrams.net. It is a powerful, popular, open-source graphical editor. In practical case studies, however, many users’ needs could not be met, such as reusing ontology, conversion, and data mapping. Users must switch between different tools to achieve a certain step, and thereby invariably increase learning cost. The lack of validation also leads to incorrect diagrams and results for users who are not familiar with the ontology rules. To address these issues, we designed Ontopanel, a diagrams.net-based plugin that includes a set of pipeline tools for semantic modeling: importing and displaying protégé-like ontologies, converting diagrams to OWL, validating diagrams by OWL rules, and mapping data. It uses diagrams.net as the front-end for method modeling and Django as the back-end for data processing. As a web-based tool, it is very easy to expand its functionality to meet changing practical needs. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Ontology KW - Tools KW - Material digital KW - Mat-o-lab KW - Graphic design KW - Ontology development KW - Data mapping KW - FAIR KW - Materials testing PY - 2022 AN - OPUS4-55884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal-Ahmed A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - von Hartrott, P. A1 - Hanke, T. A1 - Waitelonis, J. T1 - Towards Interoperability: Digital Representation of a Material Specific Characterization Method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which represent obstacles to dislocation movement. Precise tuning of the material structure is critical for optimal mechanical behavior in the application. Therefore, analysis of the microstructure and especially the precipitates is essential to determine the ideal parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in a first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and to quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, an automatable, digital approach is demonstrated. Based on DF-TEM images of different precipitation states of a wrought aluminum alloy, a modularizable digital workflow for quantitative precipitation analysis is presented. The integration of this workflow into a data pipeline concept will also be discussed. Thus, by using ontologies, the raw image data, their respective contextual information, and the resulting output data from the quantitative precipitation analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure the reproducibility of the data. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. The presented work is part of two digitization initiatives, the Platform MaterialDigital (PMD, materialdigital.de) and Materials-open-Laboratory (Mat-o-Lab). T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Interoperability KW - Ontology KW - Precipitation Analysis PY - 2022 AN - OPUS4-55892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test: From Standard to PMD Application Ontology N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) should contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. T2 - Onboarding Workshop der Plattform Material Digital (PMD) CY - Online meeting DA - 13.04.2021 KW - Ontology KW - Platform MaterialDigital KW - PMD KW - Tensile Test KW - Normung KW - Standardization PY - 2021 AN - OPUS4-52425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-oriented modeling of the Vickers hardness knowledge graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. T2 - ICMMM 2023: 10th International Conference on Mechanics, Materials and Manufacturing CY - Washington, D.C., USA DA - 18.08.2023 KW - Ontology KW - Knowledge graph KW - Data mapping KW - Vickers hardness KW - FAIR data PY - 2023 AN - OPUS4-58100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Digital representation of materials testing data for semantic web analytics: Tensile stress relaxation testing use case N2 - This study aims to represent an approach for transferring the materials testing datasets to the digital schema that meets the prerequisites of the semantic web. As a use case, the tensile stress relaxation testing method was evaluated and the testing datasets for several copper alloys were prepared. The tensile stress relaxation testing ontology (TSRTO) was modeled following the test standard requirements and by utilizing the appropriate upper-level ontologies. Eventually, mapping the testing datasets into the knowledge graph and converting the data-mapped graphs to the machine-readable Resource Description Framework (RDF) schema led to the preparation of the digital version of testing data which can be efficiently queried on the web. T2 - ICMDA 2024: 7th International Conference on Materials Design and Applications CY - Tokyo, Japan  DA - 09.04.2024 KW - Digitalization KW - Tensile stress relaxation KW - Ontology KW - Mechanical testing KW - Semantic web PY - 2024 AN - OPUS4-59979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, Henk A1 - Grundmann, J. A1 - Grübler, N. A1 - Marschall, Niklas A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit A1 - Waitelonis, J. A1 - von Hartrott, P. T1 - FAIR tensile test data in PMD: From a standard-compliant application ontology to RDF data in a triple store N2 - Following the new paradigm of materials development, design and optimization, the digitalization of materials and processes is the main goal which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. This includes storage, processing and querying of data in a preferably standardized form, also addressing the incorporation of standardization bodies. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and semantic conceptualizations that are needed for data management and the digitalization in the field of materials science. With respect to this currently ever-growing topic of integration and reuse of data and knowledge from synthesis, production and characterization of materials, this presentation shows the efforts taken within the project Platform MaterialDigital (PMD, materialdigital.de) to store tensile test data in accordance with a standard-compliant ontological representation. The includes the path from developing an ontology in accordance with the respective standard, converting ordinary and arbitrarily selected data gained from standard tests into the interoperable RDF format, up to connecting the ontology and data, respectively. Finally, such data can be queried from a triple store. In the field of material science and engineering (MSE), most mechanical test methods are standardized which serves as a valid basis for ontology development. Therefore, the well-known tensile test of metals at room temperature (DIN EN ISO standard 6892-1:2019-11) was selected to be considered as one of the first use cases in PMD. This consideration within the PMD features both, the ontological representation of such a tensile test in accordance with the standard as well as exemplary data generation. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - S355 steel sheet KW - Mechanical testing KW - Tensile test KW - Digitization KW - Ontology KW - Data structure KW - Material digital PY - 2022 AN - OPUS4-55882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -