TY - RPRT A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Karlin, J. A1 - Skrotzki, Birgit A1 - Schweizer, C. T1 - Lebensdauerberechnung von Aluminium-Radialverdichterrädern unter Berücksichtigung der Werkstoffalterung N2 - Die Mikrostruktur von ausscheidungsgehärteten Aluminiumlegierungen ist von herausragender Bedeutung für ihre Festigkeit, da nur Werkstoffe mit gezielt eingestellter Mikrostruktur für Radialverdichterräder ausreichende Festigkeiten erreichen. Diese optimierte Mikrostruktur ändert sich jedoch während des Betriebs, denn die Bauteile werden bei Temperaturen eingesetzt, die nahe der Aushärtetemperatur liegen oder sogar darüber hinausgehen und folglich ist mit Alterung der Mikrostruktur und damit einhergehender Degradation der Eigenschaften zu rechnen. Diese Effekte konnten bisher in der Lebensdauervorhersage nicht berücksichtigt werden, da ihre diesbezüglichen Auswirkungen lediglich qualitativ bekannt waren. In diesem Forschungsvorhaben wurde daher für die Legierung EN AW-2618A einerseits eine sorgfältige und umfassende Charakterisierung der Gefügeentwicklung für anwendungsrelevante Temperaturen und Zeiten bis zu 25.000 h vorgenommen und andererseits eine solide Datenbasis bezüglich der mechanischen Eigenschaften (Zugfestigkeit, Kriechwiderstand, LCF-, TMF-Verhalten) und ihren Änderungen geschaffen. Darauf aufbauend wurde ein Verfahren entwickelt, um die Genauigkeit der Lebensdauerbewertung für Abgasturbolader (ATL)-Verdichterräder aus EN AW-2618A zu verbessern. Ein zeit- und temperaturabhängiges Verformungsmodell nach Chaboche, welches die wesentlichen Phänomene der Hochtemperaturverformung und der Wechselplastizität beschreibt, wurde erweitert und berücksichtigt nun die Werkstoffalterung, indem die Festigkeit nicht nur als Funktion der Temperatur, sondern auch des Alterungszustands (d. h. des mittleren Radius der Ausscheidungen) dargestellt wird. Für die Erweiterung des Modells zur Bewertung der Ermüdungslebensdauer unter Rainflow-klassierten Betriebslastkollektiven wurde analog verfahren. Die berechnete Lebensdauer der im Verlauf des Vorhabens durchgeführten LCF- und TMF-Versuche stimmt gut mit den experimentellen Ergebnissen überein. KW - Alloy 2618A KW - Degradation KW - Dark-field transmission electron microscopy (DFTEM) KW - S-Phase KW - Aluminum PY - 2018 SP - 1 EP - 123 AN - OPUS4-44618 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Zapala, P. A1 - Abel, Andreas A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtempera- tureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu be- stimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. Das Ziel des Forschungsvorhabens ist erreicht worden. KW - Simulationsgestützte Gießkonzepte KW - Intermetallische FeAl-Legierungen PY - 2023 IS - 1322 SP - 1 EP - 168 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-56932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Radners, J. A1 - Han, Ying A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Aluminium Hochtemperaturermüdung N2 - Die hohen Betriebstemperaturen während des Einsatzes von Radialverdichterrädern in Abgasturboladern führen zu einer Änderung der ursprünglich eingestellten Mikrostruktur in der warmfesten Aluminiumlegierung EN AW-2618A (Überalterung). Grund dafür sind thermische Belastungen, die nahe der Aushärtetemperatur liegen und diese kurzzeitig sogar überschreiten können. Die Alterungsmechanismen wurden zusammen mit den Themen niederzyklische (LCF) und thermomechanische Ermüdung (TMF) sowie Kriechen bis max. 190 °C in vorangegangenen Forschungsvorhaben untersucht. Kaum untersucht war bisher das Verhalten der Legierung unter hochzyklischer Beanspruchung (HCF) sowie der Einfluss von Kerben und Lastkollektiven. Da zukünftig mit weiter steigenden Betriebstemperaturen für Radialverdichter zu rechnen ist, wurde in diesem Forschungsvorhaben das HCF-Verhalten bei 230 °C untersucht und somit bei einer Prüftemperatur, die deutlich oberhalb der Aushärtetemperatur liegt. Das Ziel des Projektes war der Aufbau einer geeigneten experimentellen Datenbasis, das Verständnis der relevanten mikrostrukturellen Prozesse sowie die Weiterentwicklung und Anpassung geeigneter Modelle und Bewertungsmethoden. Das experimentelle Untersuchungsprogramm umfasste neben einer Basischarakterisierung des HCF-Verhaltens am Ausgangszustand T61 gezielte mechanische Versuche zur Isolierung der Einflussfakto-ren Mittelspannung (𝑅 = −1, 𝑅 = 0,1), Werkstoffüberalterung (T61, 10 h/230 °C, 1000 h/230 °C), Prüftemperatur (20 °C, 230 °C), Prüffrequenz (0,2 Hz, 20 Hz) sowie Kerbwirkung und variable Amplituden. Darauf aufbauend wurden die in den vorangegangenen Projekten entwickelten Modelle und Bewertungsmethoden angepasst und weiterentwickelt, um die genannten thermischen und mechanischen Belastungen in der Lebensdauerbewertung abzubilden. KW - HCF KW - Aluminium KW - EN AW-2618A KW - Ermüdung PY - 2023 SP - 1 EP - 111 CY - Frankfurt am Main AN - OPUS4-57850 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Ganesh, R. A1 - Dude, D. P. A1 - Kuna, M. A1 - Kiefer, B. T1 - TMF-Rissverlaufsberechnung für ATL-Heißteile N2 - Die Steigerung der Leistung und des thermodynamischen Wirkungsgrades von Verbrennungsmotoren führt zu erhöhten Anforderungen an die Festigkeit abgasführender Komponenten wie z. Bsp. Abgasturbolader. Als Folge erhöhter thermomechanischer Wechselbeanspruchungen (TMF) im Betrieb kommt es an den mechanisch und/oder thermisch höchst beanspruchten Stellen der Bauteile zur Bildung von Rissen, wodurch die Lebensdauer der Komponenten begrenzt wird. Derzeit werden bei Turboladern heißgehende Bauteile mit detektierten Rissen zumeist prophylaktisch ersetzt, da die weitere Ausbreitung der Risse während des Betriebs nicht vorhergesagt werden kann. Um diese aufwändige und un- ökonomische Praxis zu vermeiden, wurde im vorliegenden Forschungsvorhaben eine rechnerische Bewertungsmethode auf Basis der experimentellen und numerischen Bruchmechanik erarbeitet, mit deren Hilfe bereits in der Auslegungsphase oder während des Betriebs die (restliche) Lebensdauer der abgasführenden Komponenten vorhergesagt werden kann. Damit wird erstmalig die quantitative Vorhersage der Rissentwicklung bei TMF-Beanspruchungsbedingungen unter Berücksichtigung großer zyklischer viskoplastischer Verformungen ermöglicht. Zentrales Ergebnis des Vorhabens ist eine automatisierte Berechnungsprozedur auf der Basis spezieller Finite-Elemente-Techniken (FEM), womit sowohl der Pfad als auch die Größe eines Risses als Funktion der Anzahl der Lastwechsel in Bauteilen unter TMF-Bedingungen berechnet werden kann. Als geeigneter Beanspruchungsparameter zur Bewertung des Rissfortschritts unter TMF wurde die zyklische Rissöffnungsverschiebung ΔCTOD verwendet. Das Werkstoffverhalten des betrachteten austenitischen Gusseisens Ni-Resist D-5S wurde mit einem validierten viskoplastischen, temperaturabhängigen Materialmodell modelliert, das zur Berücksichtigung große Verzerrungen und Rotationen am Riss erweitert wurde. Für die genaue Berechnung des ΔCTOD bei TMF wurden effiziente FEM-Techniken erarbeitet. Zur Simulation der Rissausbreitung wurde ein automatischer FEM-Algorithmus mit inkrementeller adaptiver Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Dieser Algorithmus wurde im Software-Paket ProCrackPlast implementiert, das in Verbindung mit dem kommerziellen FEM-Code Abaqus zur Lösung dreidimensionaler Rissprobleme zur Verfügung steht. Ziel der umfangreichen experimentellen Arbeiten war es, an isothermen LCF und anisothermen TMF-Versuchen mit gekerbten Flachzugproben (SENT) das Risswachstum im Temperaturbereich von 20 °C bis 700 °C zu ermitteln. Mit Hilfe begleitender 2D FEM Simulationen wurden anhand dieser Datenbasis die Rissfortschrittskurven des Werkstoffs unter Anwendung des ΔCTOD-Konzepts bestimmt und in geeigneter, parametrisierter Form den Nutzern zur Verfügung gestellt. Die Versuche an SENT-Proben wurden mit der entwickelten Software ProCrackPlast als 3D Modell simuliert. Der Vergleich der 2D und 3D Simulationen ergab einen systematischen Unterschied im CTOD und CTOD, der mit Hilfe eines Übertragungsfaktors korrigiert wurde. Der Vergleich der 3D Berechnungen mit den Experimenten zeigte eine zufriedenstellende Übereinstimmung der er- reichten Risslänge mit der Zahl der Lastzyklen im gesamten Temperaturbereich, wobei die numerische Prognose meist auf der konservativen / sicheren Seite lag. Die Übertragbarkeit der Ergebnisse der 2D Parameteridentifikation auf 3D Risskonfigurationen mit Mixed-Mode Beanspruchung ist mit zusätzlichen Versagenshypothesen verbunden, die aufgrund fehlender Versuchsdaten im Vorhaben nicht endgültig geklärt werden konnten. Zur Validierung des Gesamtkonzeptes wurden LCF-Proben mit einem bauteil- typischen Oberflächenriss experimentell und numerisch untersucht. In der Simulation konnte die komplexe Form und Größe der Rissentwicklung zufriedenstellend (richtig) vorhergesagt werden. Die Leis- tungsfähigkeit der erarbeiteten rechnerische Bewertungsmethode wurde an weiteren TMF-Beispielen vorgestellt und diskutiert. Die Software ProCrackPlast und die viskoplastische Materialroutine wurden dem Anwenderkreis des Vorhabens zusammen mit einem Nutzer-Handbuch und Verifikationsbeispielen zur Verfügung gestellt. Das Ziel des Forschungsvorhabens ist erreicht worden. KW - Abgasturbolader Heißteile KW - Numerische Simulation KW - Rissverlauf PY - 2023 VL - 1320 SP - 1 EP - 137 PB - Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt am Main AN - OPUS4-56960 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -