TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza T1 - Melting upon Coalescence of Solid Nanoparticles N2 - The large surface-to-volume ratio of nanoparticles is understood to be the source of many interesting phenomena. The melting temperature of nanoparticles is shown to dramatically reduce compared to bulk material. Yet, at temperatures below this reduced melting point, a liquid-like atomic arrangement on the surface of nanoparticles is still anticipated to influence its properties. To understand such surface effects, here, we study the coalescence of Au nanoparticles of various sizes using molecular dynamics simulations. Analysis of the potential energy and Lindemann index distribution across the nanoparticles reveals that high-energy, high-mobility surface atoms can enable the coalescence of nanoparticles at temperatures much lower than their corresponding melting point. The smaller the nanoparticles, the larger the difference between their melting and coalescence temperatures. For small enough particles and/or elevated enough temperatures, we found that the coalescence leads to a melting transition of the two nominally solid nanoparticles, here discussed in relation to the heat released due to the surface reduction upon the coalescence and the size dependence of latent heat. Such discontinuous melting transitions can lead to abrupt changes in the properties of nanoparticles, important for their applications at intermediate temperatures. KW - Nanoparticles KW - Molecular Dynamics KW - Surface-induced Melting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552183 DO - https://doi.org/10.3390/solids3020025 VL - 3 IS - 2 SP - 361 EP - 373 PB - MDPI AN - OPUS4-55218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -