TY - JOUR A1 - Treninkov, И. A A1 - Petrushin, N. V. A1 - Epishin, А. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СТРУКТУРНО-ФАЗОВЫХ ПАРАМЕТРОВ НИКЕЛЕВОГО ЖАРОПРОЧНОГО СПЛАВА T1 - Experimental determination of temperature dependence of structural-phase parameters of nickel-based superalloy N2 - Методом рентгеноструктурного анализа в интервале температур 18—1150 °С определены температурные зависимости периодов кристаллических решеток γ- и γ'-фаз, их размерно-го несоответствия (мисфит) и объемной доли γ'-фазы экспериментального монокристал-лического жаропрочного никелевого сплава. Определены диапазоны температур, в которых происходят интенсивные изменения структурно-фазовых характеристик исследованного сплава. KW - рентгеноструктурный анализ KW - высокие температуры KW - жаропрочные нике- левые сплавы KW - монокристалл KW - γ- и γ'-фазы, период кристаллической решетки PY - 2021 U6 - https://doi.org/10.31044/1684-579x-2021-0-7-3-12 IS - 7 SP - 3 EP - 12 AN - OPUS4-53110 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hajian, A. A1 - Konegger, T. A1 - Bielecki, K. A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Schwarz, S. A1 - Zellner, C. A1 - Schmid, U. T1 - Wet chemical porosification with phosphate buffer solutions for permittivity reduction of LTCC substrates N2 - The wireless high-frequency technology requires a robust, cost-effective, and highly integrated substrate technology offering the capability for areas of tailored permittivity. The wet-chemical porosification of low temperature co-fired ceramics (LTCC) substrates offers such an approach by locally embedding air. Porosification of LTCC in both extremely acidic and alkaline media has been investigated in previous works. However, for improving the available knowledge on the porosification of LTCC with H3PO4 as a standard and a widely used etching solution, the impact of solution concentration was systematically investigated and a substantial improvement in the etching performance was achieved. Moreover, in the present study, for the first time, the intermediate pH values, and the impact of pH as a key parameter on the etching process have been investigated. For this purpose, the applicability of phosphate buffer solution (PBS) as a prospective novel etchant mixture for the porosification of a commercially available LTCC tape (Ceramtape GC) was explored. Valuable information about surface morphology, crystalline composition, and the pore structure of the etched LTCCs was gathered employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and mercury porosimetry measurements. Based on these findings, the performance of PBS-based etchant systems towards the generation of porous LTCCs combining high depths of porosification with acceptable surface characteristics for subsequent metallization is demonstrated. Based on the obtained results, by application of a 0.2 mol L−1 solution of PBS, the effective relative permittivity of test samples with a thickness of approximately 600 µm and a porosification depth of 186 µm from each side, could be reduced up to 10% of its initial “as fired” value. Also, based on the measurement results and by measuring the depth of porosification, the permittivity of the etched layer was estimated to show a reduction of up to 22% compared to the initial “as fired” value. KW - LTCC KW - Porosification KW - Wet chemical etching KW - Permittivity reduction PY - 2020 U6 - https://doi.org/10.1016/j.jallcom.2020.158059 SN - 0925-8388 VL - 863 SP - 158059 PB - Elsevier B.V. AN - OPUS4-51800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527068 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509497 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gibson, N. A1 - Kuchenbecker, Petra A1 - Rasmussen, K. A1 - Hodoroaba, Vasile-Dan A1 - Rauscher, H. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A.G. T1 - Volume-specific surface area by gas adsorption analysis with the BET method N2 - This chapter first gives an introduction to the concepts of SSA and volume-specific surface area (VSSA) and an outline of the BET method. It continues with a discussion of the relationship between particle size, shape, and the VSSA, followed by an overview of instrumentation, experimental methods, and standards. Finally, sections on the use of the VSSA as a tool to identify nanomaterials and non-nanomaterials and its role in a regulatory context provide some insight on the importance of VSSA in the current Regulation of nanomaterials. KW - Nanomaterials KW - Volume specific surface area PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00017-1 SP - 265 EP - 293 PB - Elsevier CY - Amsterdam AN - OPUS4-49572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 U6 - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587295 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 U6 - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 U6 - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - During the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and the scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realized by austenitic stainless steels, remains problematic, which is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. The development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behavior of hydrogen in austenitic steel contributes to an understanding of the damage processes, which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry was conducted after electrochemical charging. To obtain further information about the structural composition and cracking behavior, electron-backscattered diffraction and scanning electron microscopy were performed. Gathered data of chemical composition and topography were treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behavior, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - 21st International Conference on Secondary Ion Mass Spectrometry CY - Kraków, Poland DA - 10.09.2017 KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Austenitic stainless steel PY - 2018 U6 - https://doi.org/10.1116/1.5013931 SN - 1071-1023 VL - 36 IS - 3 SP - Article 03F103, 1 EP - 6 PB - American Vacuum Society (AVS) AN - OPUS4-44840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -