TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 U6 - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - A Fourier transformation-based method for gradient-enhanced modeling of fatigue N2 - A key limitation of the most constitutive models that reproduce a Degradation of quasi-brittle materials is that they generally do not address issues related to fatigue. One reason is the huge computational costs to resolve each load cycle on the structural level. The goal of this paper is the development of a temporal Integration scheme, which significantly increases the computational efficiency of the finite element method in comparison to conventional temporal integrations. The essential constituent of the fatigue model is an implicit gradient-enhanced formulation of the damage rate. The evolution of the field variables is computed as amultiscale Fourier series in time.On a microchronological scale attributed to single cycles, the initial boundary value problem is approximated by linear BVPs with respect to the Fourier coefficients. Using the adaptive cycle jump concept, the obtained damage rates are transferred to a coarsermacrochronological scale associated with the duration of material deterioration. The performance of the developedmethod is hence improved due to an efficient numerical treatment of the microchronological problem in combination with the cycle jump technique on the macrochronological scale. Validation examples demonstrate the convergence of the obtained solutions to the reference simulations while significantly reducing the computational costs. KW - Accelerated temporal integration KW - Fourier series KW - Gradient-enhanced fatigue model PY - 2018 U6 - https://doi.org/10.1002/nme.5740 SN - 1097-0207 SN - 0029-5981 VL - 114 IS - 2 SP - 196 EP - 214 PB - Wiley AN - OPUS4-44008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza T1 - A model for grain boundary thermodynamics N2 - Systematic microstructure design requires reliable thermodynamic descriptions of each and all microstructure elements. While such descriptions are well established for most bulk phases, thermodynamic assessment of microstructure defects is challenging because of their individualistic nature. In this paper, a model is devised for assessing grain boundary thermodynamics based on available bulk thermodynamic data. We propose a continuous relative atomic density field and its spatial gradients to describe the grain boundary region with reference to the homogeneous bulk and derive the grain boundary Gibbs free energy functional. The grain boundary segregation isotherm and phase diagram are computed for a regular binary solid solution, and qualitatively benchmarked for the Pt–Au system. The relationships between the grain boundary's atomic density, excess free volume, and misorientation angle are discussed. Combining the current density-based model with available bulk thermodynamic databases enables constructing databases, phase diagrams, and segregation isotherms for grain boundaries, opening possibilities for studying and designing heterogeneous microstructures. KW - Phase Diagram KW - Thermodynamics KW - Grain boundary PY - 2020 VL - 10 IS - 45 SP - 26728 EP - 26741 AN - OPUS4-51268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546729 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521012 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knabe, C. A1 - Stiller, M. A1 - Kampschulte, M. A1 - Wilbig, Janka A1 - Peleska, B. A1 - Günster, Jens A1 - Gildenhaar, R. A1 - Berger, G. A1 - Rack, A. A1 - Linow, U. A1 - Heiland, M. A1 - Rendenbach, C. A1 - Koerdt, S. A1 - Steffen, C. A1 - Houshmand, A. A1 - Xiang-Tischhauser, L. A1 - Adel-Khattab, D. T1 - A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo N2 - Recently, efforts towards the development of patient-specific 3D printed scaffolds for bone tissue engineering from bioactive ceramics have continuously intensified. For reconstruction of segmental defects after subtotal mandibulectomy a suitable tissue engineered bioceramic bone graft needs to be endowed with homogenously distributed osteoblasts in order to mimic the advantageous features of vascularized autologous fibula grafts, which represent the standard of care, contain osteogenic cells and are transplanted with the respective blood vessel. Consequently, inducing vascularization early on is pivotal for bone tissue engineering. The current study explored an advanced bone tissue engineering approach combining an advanced 3D printing technique for bioactive resorbable ceramic scaffolds with a perfusion cell culture technique for pre-colonization with mesenchymal stem cells, and with an intrinsic angiogenesis technique for regenerating critical size, segmental discontinuity defects in vivo applying a rat model. To this end, the effect of differing Si-CAOP (silica containing calcium alkali orthophosphate) scaffold microarchitecture arising from 3D powder bed printing (RP) or the Schwarzwalder Somers (SSM) replica fabrication technique on vascularization and bone regeneration was analyzed in vivo. In 80 rats 6-mm segmental discontinuity defects were created in the left femur. KW - Additive Manufacturing KW - Bio active ceramic KW - In-vivo KW - Alcium alkali phosphate PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584555 SN - 2296-4185 VL - 11 SP - 1 EP - 20 PB - Frontiers SA CY - Lausanne AN - OPUS4-58455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 U6 - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. T1 - About the reliability of EBSD measurements: Data enhancement N2 - An extensive set of information about the diffracting volume is carried by EBSD patterns: the crystal lattice, the reciprocal lattice, the crystal structure, the crystal symmetry, the mean periodic number of the diffracting phase, the source point from where it has been projected (projection centre), the crystal orientation, the sample topography (local tilt), the (preparation) quality of defect density of the crystal, and possible pattern overlaps. Some of this information is used regularly in conventional EBSD analyses software while others are still waiting for a more widespread application. Despite the wealth of information available, the accuracy and precision of the data that are presently extracted from conventional EBSD patterns are often well below the actual physical limits. Using a selection of example applications, we will demonstrate the gain in angular resolution possible using relatively low-resolution patterns of approximately 20k pixels in combination with pattern matching (PM) approaches. In this way, fine details in a microstructure can be revealed which would otherwise be hidden in the orientation noise. KW - EBSD KW - Orientation precision KW - Disorientation KW - Grain boundary KW - Phase transformation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521618 VL - 891 SP - 012018 PB - IOP Science AN - OPUS4-52161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pimentel, A. S. O. A1 - Guesser, W. L. A1 - Custódio da Silva, W. J. R. A1 - Portella, Pedro Dolabella A1 - Woydt, Mathias A1 - Burbank, J. T1 - Abrasive wear behavior of austempered ductile iron with niobium additions N2 - Carbidic Austempered Ductile Iron (CADI) microstructures containing eutectic carbides can be produced by the addition of carbide stabilizing elements, such as chromium. Carbides formed from the addition of Cr are eutectic of M3C type. The presence of such hard phases can enhance the abrasion wear resistance of ductile iron. A new CADI can be produced by the addition of Nb. Niobium carbide particles are formed in the beginning of solidification and remain stable once they are insoluble in solid iron matrix. The dry sand abrasive wear resistance of ductile irons alloyed with 1.0, 1.8, and 2.4 wt% Nb were tested in both “as-cast” and “heat treated” conditions using standard ASTM G65. Results were compared to abrasive wear data obtained on ductile iron alloyed with 1 wt% Cr, CADI (1 wt% Cr), and the basic composition of iron without carbide stabilizing elements. In the “ascast” condition, the addition of Nb did not lead to a reduction in wear, while CADI with Nb is a promising substitute for CADI with Cr addition, because both materials showed very similar values of abrasion resistance. Micro-ploughing and micro-cutting mechanisms were observed on the worn surfaces of ductile irons. Abrasive wear resistance of these alloys was correlated with the volume fraction of carbides. KW - arbidic austempered ductile iron KW - Ductile iron KW - Niobium alloying KW - Abrasion PY - 2019 U6 - https://doi.org/10.1016/j.wear.2019.203065 VL - 2019 IS - 440–441 SP - 203065 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-50784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -