TY - JOUR A1 - Agea Blanco, Boris A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency JF - International Journal of Energy Research N2 - Surface roughness, R Z , normal transmittance, Τ N , total transmittance, Τ T , and photovoltaic (PV) module efficiency, η S , were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200 – 400 μ m), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch ‐ like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch ‐ like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽ 2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. KW - Transmittance KW - Efficiency KW - Photovoltaic modules KW - Roughness KW - Sand blasting PY - 2018 DO - https://doi.org/10.1002/er.3930 SN - 1099-114X SN - 0363-907X VL - 42 IS - 3 SP - 1298 EP - 1307 PB - Wiley & Sons, Ltd. AN - OPUS4-44157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass JF - Journal of Non-Crystalline Solids N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Schuth, S. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Fechtelkord, M. A1 - Deubener, J. T1 - The influence of H2O and SiO2 on the structure of silicoborate glasses JF - Journal of Non-Crystalline Solids N2 - To understand the impact of dissolved water on structure and properties, four boron-rich glasses of molar compositions 15-x Na2O x CaO 15 SiO2 70 B2O3 (with x=0, 7.5, 10) and 10 Na2O 15 SiO2 75 B2O3 were prepared and subsequently hydrated (up to 8 wt% H2O). Density measurements show a non-linear trend upon hydration implying large structural changes in particular at water contents<2 wt%. Near-infrared spectroscopy shows hydroxyl groups are the dominant species in all glasses upon the entire range of water content. Molecular H2O is detectable only at total water contents>2 wt%. 11B MAS NMR spectra show that the abundance of BO4 species is mainly controlled by ratio of (Na2O+CaO)/B2O3 while incorporation of water plays a minor role. Compared to borate glasses, the efficiency of formation of BO4 tetrahedra is favored by crosslinking of the network by SiO4-units. The glass transition temperatures, determined by differential thermal analysis, decreases continuously with water content due to breakage of B-O-B bonds by hydrolysis. However, compared to Silicates and aluminosilicates, the effect of dissolved water is less pronounced which can be explained by weaker B-O-B bonds in comparison to Si-O-Si bonds. KW - High pressure KW - Water speciation KW - Silicoborate glasses KW - Infrared spectroscopy KW - NMR spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.05.030 VL - 519 SP - 38 EP - 51 PB - Elsevier B.V. AN - OPUS4-48748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses JF - frontiers in Materials N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behrens, H. A1 - Bauer, U. A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Müller, Ralf A1 - Deubener, J. T1 - Structural relaxation mechanisms in hydrous sodium borosilicate glasses JF - Journal of Non-Crystalline Solids N2 - Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses. KW - Borosilicate glass KW - Water KW - Relaxation KW - Internal friction KW - Glass transition PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2018.05.025 VL - 497 SP - 30 EP - 39 PB - Elsevier B.V. AN - OPUS4-45608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Sintering and foaming of bioactive glasses JF - Journal of American Ceramic Society N2 - Sintering, crystallization, and foaming of 44.8SiO2–2.5P2O3–36.5CaO–6.6Na2O–6.6K2O–3.0CaF2 (F3) and 54.6SiO2–1.7P2O3–22.1CaO–6.0Na2O–7.9K2O–7.7MgO (13–93) bioactive glass powders milled in isopropanol and CO2 were studied via heating microscopy, differential thermal analysis, vacuum hot extraction (VHE), Infrared spectroscopy, and time-of-flight secondary ion mass spectrometry. Full densification was reached in any case and followed by significant foaming. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750◦C, which hints on a thermally very stable species or mechanical trapping. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. KW - Bioactive Glass KW - Crystallization KW - Foaming KW - Sintering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552454 DO - https://doi.org/10.1111/jace.18626 SN - 0002-7820 SP - 1 EP - 11 PB - Wiley online library AN - OPUS4-55245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Master curve for viscous crack healing JF - Materials Letters N2 - A novel method to generalize kinetic data of viscous crack healing in glasses is proposed. The method assumes that crack healing progress is proportional to the healing time, t, and indirect proportional to viscosity, n. This way, crack length and crack width data, normalized to the initial crack length and plotted versus t/n, allow to compare crack healing progress for different cracks and healing temperatures in a master curve. Crack healing experiments conducted in this study demonstrate the applicability of this method for a commercial microscope slide glass. KW - Crack healing KW - Glass KW - Master curve KW - Vickers indentation PY - 2018 DO - https://doi.org/10.1016/j.matlet.2017.12.082 SN - 0167-577X SN - 1873-4979 VL - 216 SP - 110 EP - 112 PB - Elsevier AN - OPUS4-44300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass JF - Journal of the American Ceramic Society N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587295 DO - https://doi.org/10.1111/jace.19245 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 JF - Journal of Non-Crystalline Solids N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Poologasundarampilai, G. A1 - Brauer, D. S. T1 - Sintering and concomitant crystallization of bioactive glasses JF - Journal of Applied Glass Science N2 - The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good Integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide Ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process. KW - Bioactive glass KW - Crystallization KW - Scaffolds KW - Sintering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485458 DO - https://doi.org/10.1111/ijag.13477 SN - 2041-1286 VL - 10 IS - 4 SP - 449 EP - 462 PB - Wiley AN - OPUS4-48545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -