TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Fedelich, Bernard ED - Cailletaud, G. ED - Cormier, J. ED - Eggeler, G. ED - Maurel, V. ED - Nazé, L. T1 - Crystal orientation and elastic properties N2 - The elastic constants are the most basic mechanical properties of a material and are needed for any structural analysis of a component. For example, they have a major influence on the eigenfrequencies of vibrating parts. Single crystals of Ni-base superalloys are strongly anisotropic, which means that the observed properties are orientation dependent. Tensor algebra is then required to mathematically formulate the elastic properties and their relations to the crystal orientation. Hence, this chapter first summarizes some basic definitions and calculation rules for Rotation matrices, including the definition of the Euler angles, which are most commonly used to define the relative orientations of the crystal and the component. Parts of this chapter closely follow the lines of the excellent exposition of the topic by Olschewski. KW - Nickel-base superalloys KW - Elasticity PY - 2022 SN - 978-0-12-819357-0 SP - 41 EP - 67 PB - Elsevier Inc. AN - OPUS4-53435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Fedelich, Bernard ED - Cailletaud, G. ED - Cormier, J. ED - Eggeler, G. ED - Maurel, V. ED - Nazé, L. T1 - Crystal plasticity models: dislocation based N2 - The large number of TEM investigations and the regular microstructure of single-crystal nickel-base superalloys has boosted the development of a number of physically motivated constitutive laws. In contrast to the more phenomenological models discussed in the next chapter, these models use dislocation densities as internal variables. Obvious advantages are that the computed densities can be compared to TEM observations and the Deformation mechanisms can be easier translated into mathematical equations. KW - Nickel-base superalloys KW - Creep KW - Plasticity PY - 2022 SN - 978-0-12-819357-0 SP - 401 EP - 427 PB - Elsevier Inc. ET - 1 AN - OPUS4-53436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Carbon fibre composites exemplarily research at BAM N2 - Lightweighting as a cross-cutting technology contributes significantly to achieve the European Green Deal goals. Based on, but not limited to, advanced materials and production technologies, the demand for natural resources and CO2 emmissions are reduced by lightweighting during production, as well as use phase. Therefore, lightweighting is a crucial transformation technology assisting in decoupling economic growth from resource consumption. In this manner, lightweighting contributes significantly as a key technology of relevance for many industrial sectors such as energy, mobility, and infrastructure, towards resource efficiency, climate action and economic strength, as well as a resilient Europe. To strengthen international partnerships, addressing global issues of today at the edge of science with high performance lightweight material based on carbon fibers, an overview about the BAM expertise in carbon fiber reinforced materials is given. T2 - Meeting KCarbon CY - Berlin, Germany DA - 15.06.2023 KW - Lightweighting KW - Carbon Fibers KW - Recycling KW - Push-out Test KW - multi scale testing PY - 2023 AN - OPUS4-58094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-oriented modeling of the Vickers hardness knowledge graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. T2 - ICMMM 2023: 10th International Conference on Mechanics, Materials and Manufacturing CY - Washington, D.C., USA DA - 18.08.2023 KW - Ontology KW - Knowledge graph KW - Data mapping KW - Vickers hardness KW - FAIR data PY - 2023 AN - OPUS4-58100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Schultz, J. A1 - Wolf, D. A1 - Kalady, M. F. A1 - Agudo, Leonardo A1 - Lubk, A. A1 - Büchner, B. A1 - Grundy, N. A1 - Gonzalez-Martinez, I. T1 - Electron-beam-induced synthesis and characterization of disordered plasmonic gold nanoparticle assemblies N2 - Several studies have been shown that the electron beam can be used to create nanomaterials from microparticle targets in situ in a transmission electron microscope (TEM). Here, we show how this method has to be modified in order to synthesize plasmonic gold nanoparticles (NPs) on insulating silicon oxide substrate by employing a scanning electron microscope with a comparatively low acceleration voltage of 30 kV. The synthesized NPs exhibit a random distribution around the initial microparticle target: Their average size reduces from 150 nm to 3 nm with growing distance to the initial Au microparticle target. Similarly, their average distance increases. The synthesized NP assemblies therefore show distinctly different plasmonic behaviour with growing distance to the target, which allows to study consequences of random hybridization of surface plasmon in disordered system, such as Anderson localization. To reveal the surface plasmons and their localization behaviour we apply electron energy loss spectroscopy in the TEM. T2 - DPG spring conference, condensed matter section CY - Berlin, Germany DA - 17.03.2024 KW - Scanning electron microscopy KW - Gold nanoparticle synthesis KW - Disordered assemblies KW - Localized plasmons PY - 2024 AN - OPUS4-59763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Corrosion and corrosion fatigue of steels in downhole CCS environment - A summary N2 - Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO₃ and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO₂: 30 L/h, +/- applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied. KW - Steel KW - High alloyed steel KW - Corrosion KW - Corrosion fatigue KW - Carbon capture and storage PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531391 DO - https://doi.org/10.3390/pr9040594 SN - 2227-9717 VL - 9 IS - 4 SP - 1 EP - 33 PB - MDPI CY - Basel AN - OPUS4-53139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria T1 - Welding of high-entropy alloys - New material concept vs. old challenges N2 - HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - High-entropy alloy KW - Welding KW - Review PY - 2020 AN - OPUS4-51116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Gesell, Stephan A1 - Rehmer, Birgit A1 - Fedelich, Bernard T1 - Fatigue Crack Growth of Heat Resistant Austenitic Cast Iron under Isothermal and Anisothermal Conditions N2 - The heat-resistant cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) was investigated for its fatigue crack growth behavior at room and high temperatures. Force-controlled tests were carried out at constant temperatures (20 °C, 500 °C, 700 °C) without and with hold time and different load ratios. The crack growth behavior was also characterized under TMF loading (Tmin = 400 °C, Tmax = 700 °C) by applying IP and OP conditions and different load ratios. Three different techniques were combined to monitor crack growth: potential drop, thermography, and compliance method. The effect of the different loading conditions on the fatigue crack growth behavior will be presented and discussed. T2 - TMF Workshop 2024 CY - Berlin, Germany DA - 25.04.2024 KW - Fatigue crack growth KW - Thermomechanical fatigue KW - Austenitic cast iron KW - Ni-Resist PY - 2024 AN - OPUS4-59964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin A1 - Mair, Georg A1 - Gesell, Stephan T1 - Determination of Distribution Function used in MCS on Safety Analysis of Hydrogen Pressure Vessel N2 - The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often, GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and KolmogorovSmirnov tests are the mostly favorable approaches for Goodness of Fit. However, the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments. In this study, six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) NormLog based method, b) Least squares regression, c) Weighted least squares regression, d) A linear approach based on good linear unbiased estimators, e) Maximum likelihood estimation and f) The method of moments estimation. In addition, various approaches of ranking function are considered. In the study, Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here, the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end, the results are discussed, and the best reliable methods are proposed. T2 - ICHS2019 Conference CY - Adelaide, Australia DA - 24.09.2019 KW - Monte-Carlo Simulation KW - Distribution function KW - Weibull Distribution PY - 2019 AN - OPUS4-49652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus T1 - Full-Notch Creep Test Ontology (ontoFNCT) N2 - This is the stable version of the full-notch creep test ontology (OntoFNCT) that ontologically represents the full-notch creep test. OntoFNCT has been developed in accordance with the corresponding test standard ISO 16770:2019-09 Plastics - Determination of environmental stress cracking (ESC) of polyethylene - Full-notch creep test (FNCT). The OntoFNCT provides conceptualizations that are supposed to be valid for the description of full-notch creep tests and associated data in accordance with the corresponding test standard. By using OntoFNCT for storing full-notch creep test data, all data will be well structured and based on a common vocabulary agreed on by an expert group (generation of FAIR data) which is meant to lead to enhanced data interoperability. This comprises several data categories such as primary data, secondary data and metadata. Data will be human and machine readable. The usage of OntoFNCT facilitates data retrieval and downstream usage. Due to a close connection to the mid-level PMD core ontology (PMDco), the interoperability of full-notch creep test data is enhanced and querying in combination with other aspects and data within the broad field of materials science and engineering (MSE) is facilitated. The class structure of OntoFNCT forms a comprehensible and semantic layer for unified storage of data generated in a full-notch creep test including the possibility to record data from analysis and re-evaluation. Furthermore, extensive metadata allows to assess data quality and reliability. Following the open world assumption, object properties are deliberately low restrictive and sparse. KW - Ontology KW - Full-Notch Creep Test KW - FNCT KW - Knowledge Representation KW - Semantic Web Technologies KW - Data Structures KW - Data Management PY - 2024 UR - https://github.com/MarkusSchilling/ontoFNCT/blob/4abce82852190a5e444d302da077aa7404f433f0/ontoFNCT.ttl UR - https://raw.githubusercontent.com/MarkusSchilling/ontoFNCT/main/ontoFNCT.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Digital representation of materials testing data for semantic web analytics: Tensile stress relaxation testing use case N2 - This study aims to represent an approach for transferring the materials testing datasets to the digital schema that meets the prerequisites of the semantic web. As a use case, the tensile stress relaxation testing method was evaluated and the testing datasets for several copper alloys were prepared. The tensile stress relaxation testing ontology (TSRTO) was modeled following the test standard requirements and by utilizing the appropriate upper-level ontologies. Eventually, mapping the testing datasets into the knowledge graph and converting the data-mapped graphs to the machine-readable Resource Description Framework (RDF) schema led to the preparation of the digital version of testing data which can be efficiently queried on the web. T2 - ICMDA 2024: 7th International Conference on Materials Design and Applications CY - Tokyo, Japan  DA - 09.04.2024 KW - Digitalization KW - Tensile stress relaxation KW - Ontology KW - Mechanical testing KW - Semantic web PY - 2024 AN - OPUS4-59979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elfetni, Seif A1 - Darvishi Kamachali, Reza T1 - Application of deep learning to multi-phase-field modelling and simulation N2 - Recent advances in Deep Learning (DL) have significantly impacted the field of materials modelling. DL tools have been recently considered as promising tools to address the complex relationships among processing, microstructure and property of materials. The thermal stability of polycrystalline materials is a highly interesting and complex problem that could be addressed using DL techniques. The Multi-Phase-Field (MPF) method has emerged as a powerful tool for addressing grain growth phenomena from multiple perspectives. Unlike sharp-interface based methods, the MPF approach bypasses the need for detailed information on individual grains. In this work, we use DL to address issues related to MPF simulations of grain growth including numerical efficiency, computing speed, and resource consumption. This presents specific challenges for high-performance computing (HPC) due to the large datasets and complex computations required by both MPF and DL methods. We study various 3D microstructure settings with the goal of accelerating the simulation process while exploring different physical effects. In particular, the impact of grain boundary and triple junction energies on grain growth are to be investigated. The results will be presented in terms of the evolving size and shape distribution of the grains. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Phase-Field Simulation KW - Microstructure Evolution KW - Physics-informed Neural Network KW - Machine Learning PY - 2023 AN - OPUS4-58225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - KupferDigital mechanical testing datasets: Stress relaxation and low-cycle fatigue (LCF) tests N2 - The KupferDigital project deals with the development of a data ecosystem for digital materials research on the basis of ontology-based digital representations of copper and copper alloys. This document provides exemplary mechanical testing datasets for training the developed KupferDigital infrastructures. Different types of cast copper alloys were provided for this research and their mechanical testing (stress relaxation and low-cycle fatigue) was performed in the accredited materials testing laboratory, while the test results were reported according to the DIN/ISO standards and attached with the maximum possible metadata about the sample history, equipment, and calibration. The attached content file consisted of the obtained primary raw testing data as well as the secondary datasets of these tests containing the detailed metadata of mechanical testing methods. Such test data files are processed by the KupferDigital digital tools to be converted to standardized machine-readable data files. KW - Copper alloys KW - Dataset KW - Stress relaxation KW - Mechanical testing KW - Low-cycle fatigue. PY - 2024 DO - https://doi.org/10.5281/zenodo.10820437 PB - Zenodo CY - Geneva AN - OPUS4-59665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Rehmer, Birgit T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Tikana, Ladji A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - KupferDigital mechanical testing datasets N2 - The KupferDigital project aims to develop digital methods, tools, and data space infrastructures for digitalizing the entire life cycle of copper materials. The mechanical testing process is one of the main chains of such life cycles which generates lots of important testing data about the mechanical properties of the materials and their related materials and testing metadata. To train the digitalization of the mechanical testing process, different kinds of copper alloys were provided for this project, and their mechanical properties were measured by typical methods like Brinell and Vickers hardness and tensile testing. The primary raw testing data as well as the secondary datasets of these tests are provided. The detailed materials specifications, the utilized mechanical testing methods, and provided datasets are described in the content file. The test data files of heterogeneous structures are processed by the KupferDigital digital tools to be converted to standardized machine-readable data files. KW - Copper alloys KW - Dataset KW - Tensile testing KW - Mechanical testing KW - Hardness test PY - 2023 DO - https://doi.org/10.5281/zenodo.7670582 PB - Zenodo CY - Geneva AN - OPUS4-57038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruns, Sebastian A1 - Bayerlein, Bernd A1 - Grönewald, Mathias A1 - Kryeziu, Jeonna A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - Portella, Pedro Dolabella A1 - Durst, Karsten T1 - Digitalizing a lab course for undergraduate students: ELN, ontology, data management N2 - We report about a joint project aiming at the digitalization of a lab course in materials testing. The undergraduate students were asked to prepare samples of a precipitation hardened aluminum alloy and characterize them using hardness and tensile tests. In a first step, we developed the frames for the digital labor notebook using eLabFTW. The primary data and the relevant metadata of each run were saved in a central database and made available for analysis and report issues. The whole set of results produced in a course was made available in the database. This database can be improved and serve as an open repository for data on this specific alloy. The logical frame for the joint project was provided by the PMD Core Ontology (PMDco), a mid-level ontology that enables the representation and description of processes and process chains in an MSE-specific manner, ensuring full traceability of generated data. For the digitalization of this lab course, the tensile test ontology (TTO) was applied which is designed as a module of the PMDco using strongly related semantic concepts. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Electronic Lab Notebook KW - FAIR data management KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Waitelonis, J. A1 - Birkholz, H. A1 - v. Hartrott, P. A1 - Portella, Pedro Dolabella T1 - FAIR Data in Platform MaterialDigital (PMD) - Ontologies , Semantic Data Integration and Data Exchange N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD, https://materialdigital.de) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this presentation shows the efforts taken within the PMD project towards the digitalization in MSE such as the development of the mid-level PMD core ontology (PMDco, https://github.com/materialdigital/core-ontology). Furthermore, selected results of a PMD partner project use case addressing data and knowledge management from synthesis, production, and characterization of materials are shown. T2 - 1st VMAP User Meeting 2024 CY - Sankt Augustin, Germany DA - 14.02.2024 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - Data Interoperability KW - Data Exchange KW - Data Structures PY - 2024 AN - OPUS4-59567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2023 AN - OPUS4-58266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Gas turbine components, made of nickel-based alloys, undergo material damage due to high temperatures and mechanical stresses. These components need periodic replacement to avoid efficiency loss and failure. Repair of these parts is more cost-effective than replacement. State-of-the-art repair technologies, including different additive manufacturing (AM) and brazing processes, are considered for efficient restoration. Materials properties mismatches and/or internal defects in repaired parts may expedite crack initiation and propagation, reducing fatigue life. To understand the crack growth behavior in joining zones and predict the remaining life of repaired components, fatigue crack growth (FCG) tests were conducted on specimens of nickel-based alloys joined via brazing, pre-sintered preforms and AM. The FCG experimental technique was successfully adapted for joined specimens and results indicate that the investigated braze material provides a lower resistance to crack growth. In AM-sandwich specimens, the crack growth rates are significantly reduced at the interface of AM and cast material. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, USA DA - 03.03.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-59854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built. The LSD technology can be combined with binder jetting to develop the so-called “LSD-print” process. LSD-print combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to traditional processing. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour. T2 - 3rd Global Conference and Exhibition on Smart Additive Manufacturing, Design & Evaluation Smart MADE CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - LSD-print KW - Slurry KW - Binder jetting PY - 2024 AN - OPUS4-60055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Günster, Jens T1 - An overview of ceramic AM with focus on bioceramics and powder bed technologies N2 - The presentation will start with an overview of ceramic additive manufacturing (AM) technologies and will discuss the potential of AM in the field of bioceramics. The presentation will then focus on two possible use cases of binder jetting technologies. In the first example, standard powder-based binder jetting is used to manufacture a porous implant design for large scale bone defects. The related challenges in the process chain will be discussed, from powder synthesis to sintering and characterization of the printed part. In the second example, the LSD-print slurry-based binder jetting technology is presented as a possibility to adapt powder-bed AM to produce dense ceramic parts. The use case will focus on an application in the field of dental ceramics, specifically for the manufacturing of patient individualized single tooth restorations (veneers, crowns) with a high throughput process chain. T2 - BioCAM - Additive Manufacturing Applied to Bioceramics CY - Mons, Belgium DA - 06.12.2023 KW - Additive Manufacturing KW - Bioceramic KW - Binder Jetting PY - 2023 AN - OPUS4-60053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian M. A1 - Kar, Satyakam A1 - Fähler, Sebastian A1 - Maaß, Robert T1 - Small-scale functional fatigue of a Ni-Mn-Ga Heusler alloy N2 - Functional fatigue of shape-memory alloys is a considerable threat to the reliable service of actuation devices. Here, we demonstrate the essentially degradation-free cyclic phase-transformation behavior of Ni-Mn-Ga microcrystals up to one million stress-driven superelastic cycles. Cyclic dissipation amounts to about 1/5 of the bulk counterpart and remains unaffected during cycling, even after the introduction of dislocation structures via plastic straining. Plastic yielding and the transformation stress largely exceed the known bulk values. However, the transformation-stress is found to depend on plastic pre-straining, which suggests that the size-affected transformation stress is sensitive to the initial defect structure and that it can be tuned by a targeted introduction of dislocations. These findings demonstrate the high suitability of Ni-Mn-Ga as a robust shape-memory alloy in small-scale functional device engineering. KW - Superelasticity KW - Shape-memory alloys KW - Functional fatigue KW - Ni-Mn-Ga PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600695 DO - https://doi.org/10.1016/j.actamat.2024.119988 VL - 274 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tokarski, T. A1 - Nolze, Gert T1 - Exploring Unconventional Uses of Kikuchi Pattern Analysis N2 - The characterization of really unknown phases typically uses 70 to 150 reflectors for lattice metric calculation. The determination of the lattice parameters follows with 4% accuracy. Including a Z correction up to 1% can be reached. The precision of the lattice parameters ratios (a:b:c) is, however, better than 0.1%. T2 - Oxford Users Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wojciak, K. A1 - Tokarski, T. A1 - Cios, G. A1 - Nolze, Gert T1 - Precision and accuracy during standard-less mapping of local lattice distortions using ebsd and calm technique N2 - Electron Back Scatter Diffraction (EBSD) is a very versatile analytical technique allowing for the characterization of material structure. Historically, diffraction images (Kikuchi patterns) registered during EBSD analysis were solved using Hough/Radon transformation. The last decade brought several novel techniques of experimental pattern analysis, focusing entirely on image analysis routines such as pattern matching, or various variants of High-Resolution EBSD. However, all the above-mentioned techniques require prior knowledge of the material structure to perform orientation analysis. The recently presented algorithm employed in Crystallographic Analysis of Lattice Metric (CALM) software, effectively removes this limitation enabling a standard-less analytical approach in EBSD systems. At its core, the CALM technique couples accurate detection of the Kikuchi bands position, with a rigid construction of reciprocal lattice resulting from translational crystal symmetry. A unique characteristic of the methodology also gives an opportunity for application in the analysis of continuous lattice changes, for example tetragonality mapping. During mapping, however, the geometry of the gnomonic projection (represented by the projection center) is continuously altered decreasing overall algorithm efficiency. The work presents an analysis of the projection center in terms of precision and accuracy. T2 - Oxford User Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Fully-reversed fatigue behavior of scarf joint repairs for wind turbine blade shell applications N2 - To enable a quick and cost-effective return to service for wind turbine blades, localized repairs can be executed by technicians in the field. Scarf repairs, shown to be highly efficient with a smooth load transition across angled joint walls and a restored aerodynamic profile, are the focus of this work. The failure mechanisms of these structures were examined under quasi-static tensile and fully-reversed cyclic loading. While the scarf ratio was held constant at 1:50, the repair layup was varied between large-to-small and small-to-large. The effect of the presence of resin pockets and the fiber orientation mismatch between parent and repair material on the restored strength of BIAX ±45° glass fiber reinforced polymer scarf joint structures was studied. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Fatigue KW - Scarf repairs KW - Glass fiber reinforced polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569646 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 195 EP - 201 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional OMA and, based on a linear viscoelastic approach, the storage modulus (E';G'), the loss modulus (E'';G'') and the loss angle tan(δ) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young's modulus. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Cross linking KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569651 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 181 EP - 186 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Ganesh, Rahul A1 - Kuna, Meinhard A1 - Skrotzki, Birgit A1 - Kiefer, Björn T1 - A CTOD-based crack growth law for thermomechanical fatigue N2 - Due to combined cyclic mechanical and thermal loading during operation, the material of exhaust gas conducting components of combustion engines is exposed to thermomechanical fatigue (TMF). This leads to formation and growth of cracks, especially at the most highly stressed points of these components. In order to better predict the service life of cracked components before failure, it is necessary to identify a crack propagation law for the material used. Isothermal crack propagation tests have been carried out at several temperatures with a typical cast iron to identify such a law. The crack length is measured by the potential drop method. The compliance method, fractography and thermographic camera measurements have been used to validate and calibrate the potential drop measurements. Each of the isothermal tests has been simulated using a specially developed FEM-algorithm based on remeshing and remapping. This algorithm has been implemented in python and ABAQUS. Thereby, the crack tip region is modeled by collapsed Quad8 elements. From the individual simulations, the cyclic crack tip opening displacement (ΔCTOD) is extracted and regarded as a potential fracture mechanics parameter which controls the crack growth rate. By combining the data from the experiments and the simulations, the crack propagation law has been identified. Finally, anisothermal crack propagation tests have been performed for validation of the crack growth law. T2 - European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Fatigue crack growth KW - Finite elmenet simulation KW - TMF experiments PY - 2022 AN - OPUS4-56934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20240207-173356-002 DO - https://doi.org/10.25643/dbt.59550 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Tracing structural dynamics in metallic glasses during cryogenic cycling N2 - Highly unrelaxed structural states of metallic glasses have often advantageous mechanical properties. Since metallic glasses continuously relax with time (age) or inherently are well relaxed after processing, methods to uniformly rejuvenate the material are needed. One approach that has received attention is the so-called cryogenic-cycling method, during which a metallic glass is repeatedly immersed into liquid nitrogen. In some cases, cryogenic cycling is truly efficient in increasing the stored excess enthalpy of metallic glasses, but it does not seem to be universally applicable to all alloys and structural states. The origins for these differences remain unclear due to our limited understanding of the underlying structural evolution. In order to shed more light onto the fundamental structural processes of cryogenic cycling, we pursue in-situ x-ray photon correlation spectroscopy (XPCS) to trace the atomic-scale structural dynamics of a Zr-based metallic glass in two different structural states (ribbon and bulk metallic glass). This method allows calculating the relaxation times as a function of time throughout the thermal cycling. It is found that the investigated glasses exhibit heterogeneous structural dynamics at 300 K, which changes to monotonic aging at 78 K. Cryogenic cycling homogenizes the relaxation time distribution for both structural states. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with long-time average structural relaxation times irrespective of the state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. Overall, a picture emerges that points towards heterogeneities in fictive temperature as a requirement for cryogenic energy storage. T2 - MRS Fall 2020 - Invited Talk CY - Boston, MA, USA DA - 27.11.2020 KW - Relaxation metallic glasses PY - 2020 AN - OPUS4-59542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalinka, Gerhard T1 - Testing the fibre matrix interface of short glass fibre reinforced PMCs with using the push out technique N2 - With this presentation, the push-out technique is explained. The focus of the experimental work is on the characterization of the fiber-matrix interface of short fiber reinforced composites. The reinforcing component was glass fibers and the matrix polymer was PA6.6 and PPA. It is demonstrated for the first time that the push-out technique ca be applied on injection molded short fiber PMC and is sensitive to the mechanical interface properties. Further studies are planned on the influence of multiple processing, the temperature and humidity. T2 - Composirtes United Workshop „Fiber Matrix Interphases“ CY - Online meeting DA - 09.11.2023 KW - Polymer Matrix Composite KW - Glass Fibres KW - PA6.6 KW - PPA KW - Push-out Test KW - Interface Strength PY - 2023 AN - OPUS4-59053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Kupfer-Symposium CY - Jena, Germany DA - 29.11.2023 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco PY - 2023 AN - OPUS4-59031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589008 DO - https://doi.org/10.52825/glass-europe.v1i.681 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Room temperature and elevated temperature tensile test and elastic properties data of Al-alloy EN AW-2618A after different aging times and temperatures N2 - The dataset contains two types of data: elastic properties (Young's and shear modulus, Poisson's ratio) between room temperature and 250 °C and a set of tensile tests at different aging times, aging temperatures, and test temperatures. KW - Aluminium alloy KW - Young's modulus KW - Shear modulus KW - Aging KW - Tensile test KW - Strength PY - 2023 UR - https://doi.org/10.5281/zenodo.10377164 DO - https://doi.org/10.5281/zenodo.10377163 PB - Zenodo CY - Geneva AN - OPUS4-59161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Fliegener, S. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. T1 - PMD Core Ontology (PMDco) N2 - The PMD Core Ontology (PMDco) is a comprehensive framework for representing knowledge that encompasses fundamental concepts from the domains of materials science and engineering (MSE). The PMDco has been designed as a mid-level ontology to establish a connection between specific MSE application ontologies and the domain neutral concepts found in established top-level ontologies. The primary goal of the PMDco is to promote interoperability between diverse domains. PMDco's class structure is both understandable and extensible, making it an efficient tool for organizing MSE knowledge. It serves as a semantic intermediate layer that unifies MSE knowledge representations, enabling data and metadata to be systematically integrated on key terms within the MSE domain. With PMDco, it is possible to seamlessly trace data generation. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the generation, derivation, and attribution of resources. By building on this foundation, PMDco facilitates the integration of data from various sources and the creation of complex workflows. In summary, PMDco is a valuable tool for researchers and practitioners in the MSE domains. It provides a common language for representing and sharing knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless traceability of data generation. Overall, PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain. PMDco at GitHub: https://github.com/materialdigital/core-ontology KW - Ontology KW - Semantic Web technologies KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2023 UR - https://github.com/materialdigital/core-ontology/blob/f2bd420348b276583fad6fa0fb4225f17b893c78/pmd_core.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Birkholz, H. A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Grundmann, J. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. A1 - Mädler, L. T1 - PMD Core Ontology: A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Semantic Interioerability KW - Mid-Level Ontology for MSE KW - FAIR Data Management PY - 2023 AN - OPUS4-58201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Eisenbart, M. A1 - Skrotzki, Birgit T1 - Materials Mechanical Testing Ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Confirming the ISO/IEC 21838-2 standard, MTO utilizes the Basic Formal Ontology (BFO), Common Core Ontology (CCO), Industrial Ontologies Foundry (IOF), Quantities, Units, Dimensions, and data Types ontologies (QUDT), and Material Science and Engineering Ontology (MSEO) as the upper-level ontologies. Reusing these upper-level ontologies and materials testing standards not only makes MTO highly interoperable with other ontologies but also ensures its acceptance and applicability in the industry. MTO represents the mechanical testing entities in the 230 classes and four main parts: i) Mechanical testing experiments entities like tensile, hardness, creep, and fatigue tests as the subclasses of mseo:Experiment, ii) Mechanical testing quantity concepts such as toughness, elongation, and fatigue strength in the appropriate hierarchies of bfo:Disposition and bfo:Quality classes, iii) Mechanical testing artifacts like indenter as the subclasses of cco:Artifact, and iv) mechanical testing data like the stress-strain, S-N, or creep curves as the subclasses of cco:InformationContentEntity. MTO is publicly available via the KupferDigital GitLab repository. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Mechanical testing KW - Ontology KW - Standard PY - 2023 AN - OPUS4-58270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Mädler, L. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology N2 - The PMD Core Ontology (PMDco) is a comprehensive set of building blocks produced via consensus building. The ontological building blocks provide a framework representing knowledge about fundamental concepts used in Materials Science and Engineering (MSE) today. The PMDco is a mid-level ontology that establishes connections between narrower MSE application ontologies and domain neutral concepts used in already established broader (top-level) ontologies. The primary goal of the PMDco design is to enable interoperability between various other MSE-related ontologies and other common ontologies. PMDco’s class structure is both comprehensive and extensible, rendering it an efficient tool to structure MSE knowledge. The PMDco serves as a semantic middle-layer unifying common MSE concepts via semantic mapping to other semantic representations using well-known key terms used in the MSE domain. The PMDco enables straight-forward documentation and tracking of science data generation and in consequence enables high-quality FAIR data that allows for precise reproducibility of scientific experiments. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the production, derivation, and attribution of resources. Via this foundation, the PMDco enables the integration of data from various data origins and the representation of complex workflows. In summary, the PMDco is a valuable advancement for researchers and practitioners in MSE domains. It provides a common MSE vocabulary to represent and share knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless tracing of science data. Overall, the PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain in general. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Ontology KW - Semantic Interoperability KW - FAIR KW - Automation PY - 2023 AN - OPUS4-58197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Z.-Jan, G.-A. A1 - Hanke, T. A1 - v. Hartrott, P. A1 - Fliegener, S. A1 - Kryeziu, J. A1 - Waitelonis, J. A1 - Sack, H. A1 - Skrotzki, Birgit T1 - Adopting FAIR data practices in materials science: Semantic representation of a quantitative precipitation analysis N2 - Many metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminium alloys, the strengthening mechanism is based on the controlled formation of nanometre-sized precipitates, which represent obstacles to dislocation movement and consequently increase the strength. Precise tuning of the material microstructure is thus crucial for optimal mechanical behaviour under service condition of a component. Therefore, analysis of the microstructure, especially the precipitates, is essential to determine the optimum parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in the first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and thereafter quantify their relevant dimensions. Often, these evaluations are still performed by manual image analysis, which is very time-consuming and to some extent also poses reproducibility problems. Our work aims at a semantic representation of an automatable digital approach for this material specific characterization method under adaption of FAIR data practices. Based on DF-TEM images of different precipitation states of a wrought aluminium alloy, the modularizable, digital workflow of quantitative analysis of precipitate dimensions is described. The integration of this workflow into a data pipeline concept will also be discussed. Using ontologies, the raw image data, their respective contextual information, and the resulting output data of the quantitative image analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure data reproducibility. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Semantic Representation KW - FAIR data management KW - Quantitative Precipitation Analysis KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Petrzak, P. A1 - Kowalski, K. A1 - Rozmus-Gornikowska, M. A1 - Debowska, A. A1 - Jedrusik, M. T1 - Annealing effect on microstructure and chemical composition of Inconel 625 alloy N2 - Our research focused on Inconel 625 weld overlays on 16Mo3 steel boiler pipes. The Investigation focused on the characterization of changes in the microstructure and chemical composition after annealing. The annealing was performed for ten hours at temperatures from 600 to 1000°C. Changes in the microstructure were observed with a scanning and transmission electron microscope (SEM and TEM). The investigation was supplemented by hardness measurements. KW - Inconel 625 KW - Microsegregation KW - Annealing PY - 2018 DO - https://doi.org/10.7494/mafe.2018.44.2.73 SN - 1230-2325 SN - 0860-6307 SN - 2300-8377 VL - 44 IS - 2 SP - 73 EP - 80 PB - AGH University of Science and Technology Press CY - Cracow AN - OPUS4-49659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Effects of saline aquifer water on the corrosion behaviour of martensitic stainless steels during exposure to CO2 environment N2 - Immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 and X5CrNiCuNb16-4 at T=60 °C and ambient pressure and p=100 bar were performed for 700 h - 8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS-sites in the Northern-German-Basin. Main corrosion products are FeCO₃ and FeOOH. Highest surface corrosion rates at ambient pressure are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4. Corrosion rates at 100 bar (max. 0.01 mm/year for 42CrMo4, X20Cr13, X46Cr13) are generally lower than at ambient pressure (<0.01 mm/year for X35CrMo4, X5CrNiCuNb16-4). Heat treatment to martensitic microstructure offers good corrosion resistance. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - CCS KW - Corrosion KW - High alloyed steels PY - 2021 DO - https://doi.org/10.2139/ssrn.3812248 SP - 1 EP - 12 PB - SSRN CY - Rochester, NY AN - OPUS4-53140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Manzoni, Anna Maria A1 - Stephan-Scherb, Christiane T1 - Corrosion induced alloy sulfidation in a high-entropy alloy (HEA) N2 - To apply high-entropy alloys (HEA) of the CrMnFeCoNi family in challenging atmospheres, their degradation behavior under harsh environments needs to be investigated. Oxidation studies to HEAs have not been extensively investigated and most of them are concentrated on environments like synthetic air, laboratory air, CO/CO2, O2 and H2O atmospheres. Main corrosion products which were identified after aging times of up to 100 h are Mn2O3 (≤800°C) and Mn3O4 (≥800°C). Another corrosive medium in high temperature applications is SO2, which preferentially forms sulfides on commercial steels for example. These can be occurred both in the oxide layer and at the oxide/metal interface. For instance, on Fe-Cr based alloys sulfides (Cr5S6) were detected along grain boundaries and their number increases with exposure time and Cr-content in the alloy. These sulfides show an increased hardness, compared to the bulk alloy, and cause an embrittlement of the grain boundaries. This is a serious material degradation phenomenon, now addressed for the case of HEAs. In the present study metal sulfides were identified after corrosion of the HEA CrMnFeCoNi alloy in an Ar-0.5vol.%SO2 atmosphere at 800°C for 24 h, 48 h, 96 h and 192 h exposure time. After all three duration times, a thin non-protective Cr2O3 layer has formed at the oxide/alloy interface. At the gas side a thick Mn3O4 layer with local voids containing sulfur could be detected by SEM-EDS analysis. Furthermore, S precipitates could be detected in the bulk material near the surface. These sulfides were characterized in detail by scanning and transmission electron microscopy. Based on these results, a model for grain boundary sulfidation of high-entropy alloy CrMnFeCoNi is discussed. T2 - EUROMAT 2021 EUROPEAN CONGRESS AND EXHIBITION ON ADVANCED MATERIALS AND PROCESSES CY - Online meeting DA - 13.09.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Sulfidation KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - Effect of corrosive atmosphere on the oxidation behavior of CrMnFeCoNi and CrCoNi alloys N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. Adomako et al. carried out oxidation tests in dry air between 800 °C and 1000 °C for 24 h in equiatomic CrCoNi, CrMnCoNi, and CrMnFeCoNi alloys. The authors showed that CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - 10th International Symposium on High-Temperature Corrosion and Protection of Materials CY - Online meeting DA - 28.03.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Botsch, B A1 - Sonntag, U A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Schmies, Lennart A1 - Yarysh, Anna T1 - Classification of fracture surface types based on SEM images N2 - The following work deals with the quantitative fracture surface evaluation in damage analysis. So far, fracture surfaces have almost exclusively been evaluated qualitatively, i.e. the presence of fracture features is documented and their surface proportions are estimated, if necessary. Many years of experience are required, as well as an intensive comparison with defined comparative images from the literature. The aim of this work is the development of classifiers which can recognize fracture mechanisms or fracture features in scanning electron microscope images (SEM). The basis is 46 SEM images, which have been evaluated by fractography experts with regard to fracture features. The existing data set of images is expanded using augmentation methods in order to increase the variability of the data and counteract overfitting. Only convolutional neural networks (CNN) are used to create the classifiers. Various network configurations are tested, with the SegNet achieving the best results. T2 - Materialsweek 2021 CY - Online meeting DA - 07.09.2021 KW - Fractography KW - Fracture surface KW - Deep learning KW - SEM PY - 2021 AN - OPUS4-53418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Manzoni, Anna M. A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, C. T1 - High-Temperature Corrosion of High- and Medium-Entropy Alloys CrMnFeCoNi and CrCoNi Exposed to a Multi-Oxidant Atmosphere H2O–O2–SO2 N2 - AbstractThe high-temperature corrosion behaviors of the equimolar CrCoNi medium-entropy alloy and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc with a mean grain size of ~ 50 μm and a homogeneous chemical composition. The oxide layer thickness of CrMnFeCoNi increased linearly with exposure time while it remained constant at ~ 1 μm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on the latter while three oxide layers were detected on the former, i.e., a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. KW - high entropy alloys KW - corrosion KW - oxidation KW - scanning electron microscopy KW - sulfidation KW - CrMnFeCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594189 DO - https://doi.org/10.1007/s44210-023-00026-8 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-59418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - Lattice parameter determination with EBSD. Is that possible? N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Institutskolloquium Kassel CY - Online meeting DA - 30.10.2020 KW - Phasenidentifikation KW - EBSD KW - Gitterkonstanten PY - 2020 AN - OPUS4-51813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kranzmann, Axel A1 - Midtlyng, Jan A1 - Schlitte, I.-V. A1 - Escoda de Pablo, S. T1 - Corrosion of VM12 SHC in Salt melt N2 - Alkali and alkaline earth chlorides are discussed as heat storage media and are characterized by their low price and high availability. Disadvantages are a high corrosion rate and formation of Cr6+ ions in the melt, as observed in various binary chlorine salt melts. In our work the system NaCl-KCl-MgCl2 is considered. The storage capacity in this salt system is between 2 and 3 MWh per 10 t salt, depending on composition, melting temperature and working temperature. At the same time the system offers a eutectic line, which allows a high variance of the composition and possibly different corrosion rates can be observed. Corrosion tests in melts were carried out and the corrosion layers investigated. The tests with chloride melts on 12% Cr steel show an inner corrosion zone of up to 40 µm depth after 96 hours. The corrosion mechanisms and potential solutions are discussed. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Salt melt KW - Corrosion KW - VM12 SHC PY - 2019 AN - OPUS4-50759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Electron-beam-induced production of gold nanoparticles N2 - Several studies have shown that the electron beam (e-beam) can be used to create nanomaterials from microparticles in situ in a TEM. However, attempts to produce gold nanoparticles (NPs) on silicon oxide substrate remained to be accomplished. Here, we show that the production of gold NPs is possible by using the e-beam in a SEM, under a set of parameters. The NPs produced present a size gradient along the radial direction. A parameter study shows that the microparticles may: 1) flicker away without producing NPs, 2) fragment to form NPs and/or 3) react with the silicon oxide substrate, depending on the applied current. A hypothesis regarding the driving physical phenomena that lead the microparticles to fragment into NPs is discussed. Fabrication of gold NPs in the SEM provides a more cost-effective option as compared to the established method in the TEM. T2 - PhD Seminar CY - Berlin, Germany DA - 26.11.2023 KW - Electron-beam-induced modification KW - Gold nanoparticles KW - Fabrication method KW - Scanning electron microscope KW - Nano-assemblies PY - 2023 AN - OPUS4-59080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Electron-beam induced particle synthesis: Phenomenological study of the physical mechanisms N2 - Several studies have shown that the electron beam (e-beam) can be used to create nanomaterials from microparticles in situ in a TEM. However, attempts to produce gold nanoparticles (NPs) on silicon oxide substrate remained to be accomplished. Here, we show that the production of gold NPs is possible by using the e-beam in a SEM, under a set of parameters. To understand the physical mechanisms leading to the gold NPs, the mechanisms of e-beam induced charging as well as e-beam induced heating of the MPs were discussed. Several hints point to heating as the driving mechanism. T2 - IFW Dresden, Seminar CY - Dresden, Germany DA - 06.12.2023 KW - Electron-beam-induced modification KW - Nanoparticle synthesis KW - Scanning electron microscopy KW - Driving physical mechanism KW - Negative charged microparticle KW - Temperature driven process PY - 2023 AN - OPUS4-59081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - A decade of cube optimization in the Al- Co-Cr-Fe-Ni-Ti high entropy family N2 - The multi-phase approach has proven to widen the application properties of high entropy alloys. After a decade of testing different alloys in the Al-Co-Cr-Cu-Fe-Ni-Ti family the Al10Co25Cr8Fe15Ni36Ti6 was found to be a solid base for more fine-tuned microstructural optimization. Following the example of superalloys, the Al10Co25Cr8Fe15Ni36Ti6 alloy aims for a γ/γ' microstructures in order to guarantee a good microstructural stability at high temperatures. The shape and volume fraction of the γ' particles is known to influence the mechanical properties of superalloys, and they do so in the high entropy family as well [1]. Shape, misfit and creep properties of several modified versions of the Al10Co25Cr8Fe15Ni36Ti6 alloy are compared and discussed in this talk. T2 - Department seminar National Chung Hsing University CY - Taichung, Taiwan DA - 15.11.2023 KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Creep KW - Phase analysis PY - 2023 AN - OPUS4-58979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Laplanche, G. A1 - Schneider, M. A1 - Hagen, S. A1 - Stephan-Scherb, C. T1 - High temperature oxidation of CrFeNi in synthetic air N2 - The surface corrosion behaviour is a key issue which determines whether the material is applicable at a given atmosphere. Medium-entropy alloy FeCrNi alloy was exposed to synthetic air at 1000°C, 1050°C, and 1100 °C for up to 1000 h using a thermobalance. The oxidation rate was parabolic at 1000 and 1050°C, but breakaway occurred at 1100°C after 5 h of aging time. The whole oxide scales formed under the isothermal oxidation tests spalled off and additional oxidation tests were carried out at 1000 °C and 1050°C for 24 h and up to 100 h at 1000°C in a tubular furnace. The corrosion behaviour of the MEA was analysed by scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction and compared to the behaviour of 316 L. The experimental results showed that under all conditions chromium is the main diffusion element resulting in the formation of a Cr2O3 layer at the MEA surface. Spallation of the layer induces the formation of additional oxidation products under the surface of the (spalled off) chromia layer. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Medium entopy alloy KW - Oxidation KW - Scanning electron microscopy KW - Thermogravimetric analysis PY - 2023 AN - OPUS4-58198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Stephan-Scherb, Christiane A1 - Laplanche, Guillaume T1 - High temperature corrosion phenomena of HEAs and MEAs N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - Symposium on Advanced Mechanical and Microstructural Characterization of High-Entropy Alloys CY - Ruhr-Universität Bochum, Germany DA - 03.02.2020 KW - Mn3O4 KW - High-entropy alloy KW - Medium-entropy alloy KW - High-temperature corrosion KW - Chromia PY - 2020 AN - OPUS4-50984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - The relaxation of macroscopic residual stresses in laser powder bed fused stainless steel 316L N2 - The processing of stainless steel 316L using the additive manufacturing process Laser Powder Bed Fusion (LPBF) can widen its field of application due to a strong increase in Yield strength, without making major compromises on the ductility nor its outstanding corrosion and oxidation properties. Furthermore, improved designs that either reduce the weight or optimise the function of a part can be obtained using LPBF. These benefits are however counterbalanced by the proneness of LPBF to inducing high Residual Stresses (RS) during manufacturing. The characterisation and monitoring of these RS are of paramount importance for the wider acceptance of the LPBF process. This study focuses on the relaxation of the initial macroscopic RS present in an LPBF 316L as-built prism that undergoes various routes of manufacturing steps to achieve different specimen geometries and stress relieving treatments. The RS are determined using Angle-Dispersive (AD) and Time-of-Flight (TOF) neutron diffraction. The results reveal high tensile RS close to the surfaces and compressive RS near the centre of the as-built parts. The reduction in size and change of geometry heavily impact the stress ranges of the remaining RS, with lower stress ranges in cylindrical shaped compared to rectangular shaped specimens. Also, the application of different stress relieving heat treatments showed that heat-treating temperatures above 800 °C are necessary to obtain a strong relaxation in LPBF 316L. T2 - The second European Conference on the Structural Integrity of Additively Manufactured Materials CY - Online meeting DA - 08.09.2021 KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2021 AN - OPUS4-53263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Menneken, Martina A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Early stages of corrosion in hot, aggressive environments N2 - We investigated the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650 °C. Two separate experiments were run, one with 99.5%-Ar + 0.5%-SO2 and one with 69.5%-Ar + 0.5%-SO2 with 30%-H2O atmosphere. During the experiment the scale growth was observed in-situ, using energy dispersive X-ray diffraction (EDXRD). Our results confirm an increased speed of oxygen transport into the material, with the addition of water, while the transport of sulfur appears to be less affected. T2 - Sektionstreffen der DMG Sektionen "Angewandte Mineralogie in Umwelt & Technik" und "Chemie, Physik und Kristallographie der Minerale" CY - Bad Windsheim, Germany DA - 28.02.2018 KW - Corrosion KW - In-situ KW - EDXRD PY - 2018 AN - OPUS4-45369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Haas, S. A1 - Hagen, S. A1 - Glatzel, U. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Corrosion in the Co-Cr-Fe-Ni high entropy alloy family N2 - While a lage amount of research on high entropy alloys is oriented towards mechanical properties and the microstructural improvement it is also necessary to keep an eye on the environment that potential application materials will be submitted to. The Co-Cr-Fe-Ni based high entropy family has shown great potential over the years of high entropy research and some candidate alloys are chosen for an insight into their corrosion behaviour. Several atmospheres are studied, i.e. O2, H2O, SO2 and a mix thereof in argon as well as synthetic air. Just as for classic alloys, the chromium is the most important element in terms of protection agains further corrosion. The addition of manganese, as in case of the “Cantor alloy” CrMnFeCoNi, overpasses Cr when it comes to oxygen affinity and thus counteracts the layer formation of Cr2O3. Even without Mn, a temperature chosen too high will also affect the formation of the chromium oxide layer and spall it off, annulling its protective potential. We can also observe how trace elements influence the layer formation. These effects and their mechanisms will be discussed for the alloys CrFeNi, CoCrNi, CrMnFeCoNi and variations of Al10Co25Cr8Fe15Ni36Ti6 using a combination of electron microscopy, thermodynamic calculations and x-ray diffraction. T2 - MRS-T International Conference CY - Hsinchu, Taiwan DA - 17.11.2023 KW - Corrosion KW - Scanning electron microscopy KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-58980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kober, E. A1 - Ricking, M. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detection of polymers in treated waste water using TED-GC-MS N2 - The presence of large quantities of plastic waste and its fragmentation in various environmental compartments are an important subject of current research. In the environment, (photo ) oxidation processes and mechanical abrasion lead to the formation of microplastics. However, until now, there are no established quality assurance concepts for the analysis of microplastic (<5 mm) in environmental compartments, including sampling, processing and analysis. The aim of the present work is the development of suitable examination methods and protocols (sampling, sample preparation and detection) to qualify and quantify microplastic in urbane water management systems. At first a fractional filtration system for sampling and the analytical tool, the so-called TED-GC-MS (thermal desorption gas chromatography mass spectrometry) were developed. The TED-GC-MS method is a two-step analytical procedure which consists of a thermal extraction where the sample is annealed and characteristic decomposition products of the polymers are collected on a solid phase. Afterwards these products are analysed using GC-MS. The developed fractional filtration for sampling and the TED-GC-MS for detection were used for quantitative analysis to screen the waste water influent and effluent of a Berlin waste water treatment plant for the most relevant polymers, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA). The results of the study revealed that the polymeres PE, PS and PP were detected in the effluent, and PE and PS were find in the raw waste water of the sewage treatment plant in Ruhleben, Berlin. Differences in polymer types and amounts were detected at different sampling dates and within different sieve fractions. Much higher amounts of polymers were observed in the raw waste water. The peak areas of the decomposition products, used for quantification of the polymers, were adjusted using so-called response factors since the TED-GC-MS method is more sensitive for PP and PS than for PE. It has been shown that PE is the most dominant polymer in the samples. Comparing the masses of polymers in the effluent and in the raw sewage, a removal of 99 % of the polymers in the water treatment plant can be assumed. These results are consistent with the literature where removal rates between 98-99 % were described. T2 - SETAC Europe CY - Rom, Italy DA - 13.05.2018 KW - Microplastics KW - Thermogravimetry KW - Waste water KW - Chromatography PY - 2018 AN - OPUS4-44968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Regarding feedstocks for the additive manufacturing (AM) of ceramics, two features are most critical in classical powder based AM processes: a high particle packing density (typically >50% TD) must be achieved with very fine particles (typically submicron) in order to ensure sufficient sintering activity. Three innovative approaches will be introduced to overcome this problem: 1. Layer wise slurry deposition: The use of water based ceramic slurries as feedstock for the additive manufacture of ceramics has many advantages which are not fully exploit yet. In the layerwise slurry deposition (LSD) process a slurry with no or low organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle on the previously deposited and dried material to form thin layers with a high packing density (55-60%). The LSD therefore shares aspects both of tape casting and slip casting. The LSD differentiates from the classical powder-based AM layer deposition, which typically achieves with a flowable coarse grained powder a low packing density (35-50%) only, consequently hindering the ability of sintering ceramic parts to full density. The LSD is coupled with the principles of selective laser sintering (SLS) or binder jetting, to generate novel processes which take advantage of the possibility of achieving a highly dense powder-bed. 2. Laser induced slip casting: Contrary to the LSD process, which requires drying of each individual layer, the direct interaction of ceramic slurries with intense laser radiation, for the laser induced slip casting (LIS), is a promising approach for the additive manufacture of voluminous parts. 3. Gas flow assisted powder deposition: By the application of a vacuum pump a gas flow is realized throughout the powder bed. This gas flow stabilizes the powder bed and results into an enhanced flowability and packing density of the powder during layer deposition. The presentation will provide a detailed discussion of potentialities and issues connected to the mentioned technologies and will describe the most recent developments in their application to technical ceramics. T2 - SmatMade 2022 CY - Osaka, Japan DA - 25.10.2022 KW - Additive Manufacturing KW - Advanced ceramics PY - 2022 AN - OPUS4-59886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Binder Jetting of Advanced Ceramics N2 - The Binder Jetting BJ process is one of the most versatile additive manufacturing technologies in use. In this process a binder is locally jetted into a powder bed for the consolidation of a 3D structure, layer by layer. Basically, all materials which can be provided as a flowable powder and, thus, spreadable to a thin layer, can be processed. Metals, ceramics and polymers are processable, but also materials from nature, such as sand, wood sawdust and insect frass. Moreover, the BJ technology is adapted to large building volumes of some cubic meters easily. Besides these striking advantages, the manufacture of ceramic parts by BJ is still challenging, as the packing density of the powder bed is generally too low and the particle size of a flowable powder too large for a successful densification of printed parts in a subsequent sintering step to an advanced ceramic product. After an introduction of binder jetting in general and highlighting some examples, strategies for obtaining dense ceramic parts by BJ will be introduced. T2 - yCAM 2022 CY - Barcelona, Spain DA - 08.11.2022 KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-59887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) within their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. In order to focus light into the volume of a ceramic powder compact, its light scattering properties must therefore be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP) and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - SmartMade 2024 CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim ED - Schmauder, S. ED - Chawla, K. K. ED - Chawla, N. ED - Chen, W. ED - Kagawa, Y. T1 - High temperature mechanical testing of metals N2 - Performing mechanical tests at high temperatures is a nontrivial issue: Compared to room temperature testing, additional phenomena like time-dependent Deformation processes and oxidation effects raise the complexity of the material’s response, while more sophisticated test setups and additional control parameters increase the number of potential sources of error. To a large extent, these complications can be overcome by carefully following all recommendations given in the respective high temperature testing standards, but more comprehensive background information helps to identify points of specific importance in particular test campaigns. In this chapter, an overview is given on general high temperature testing issues like the appropriate choice of experimental equipment and key aspects of temperature measurement. In subsequent sections, the major static and dynamic high temperature test methods are reviewed and their Special features, as compared to testing at room temperature, are highlighted based on example data sets. Influences of specimen size and environmental effects are shortly outlined in a concluding section. In the whole chapter, a focus is set on testing of “classical” metallic high temperature materials, but many considerations are equally valid for testing of intermetallics, composites, and high temperature ceramics. KW - Creep, Creep Rupture, and Stress Rupture KW - Relaxation tests KW - Low Cycle Fatigue (LCF) KW - Thermomechanical Fatigue (TMF) KW - Fatigue crack propagation PY - 2018 SN - 978-981-10-6855-3 DO - https://doi.org/10.1007/978-981-10-6855-3_44-1 SP - 1 EP - 38 PB - Springer Nature Singapore Pte Ltd. CY - Singapore AN - OPUS4-44349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extractions methods N2 - A new and full automated system for the analysis of microplastics in environmental samples is presented. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Mikroplastik KW - TED KW - Thermal degradation PY - 2018 AN - OPUS4-44179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extraction methods N2 - The presentation presents an overview about existing methods of microplastic detection with a special focus on thermo-analytical methods. T2 - Perkin Elmer Workshop Microplastics CY - Vienna, Austria DA - 11.01.2018 KW - Microplastics KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-43803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. A1 - Kalinka, Gerhard T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in the bulk of IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Residual stress KW - Selective laser melting KW - Neutron diffraction KW - IN718 PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0315-2018-File001.pdf SP - 1 AN - OPUS4-45325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Quantification and characterisation of activated carbon in activated sludge by thermogravimetric and evolved gas analyses N2 - Advanced wastewater treatment with powdered activated carbon (PAC) leads to a spread of PAC into different purification stages of wastewater treatment plants (WWTP) due to recirculation and filter back-wash. Currently, no methods for quantification of PAC in activated sludge are available. In this study, PAC containing activated sludge from four WWTP were examined by two-step thermogravimetric analysis (TGA) with heating up to 600°C in N2 and subsequently in synthetic air. Direct quantification of PAC according to temperature specific weight losses was possible for one WWTP. Quantification by combining specific mass losses was found to be an alternative direct method, with a detection limit of 1.2% PAC in dry sample mass. Additionally, evolved gas analysis (EGA) by infrared-spectroscopy (FTIR) during TGA revealed interaction mechanisms between PAC and activated sludge. Aliphatic compounds from activated sludge were identified as major substances influenced by PAC. In derivative thermogravimetry (DTG), a typical double peak at approximately 300°C was found to be related to carbonylic species with increased evolution of acetic acid in aged activated sludge. TGA and EGA are promising tools to understand, control and optimise the application of PAC in advanced wastewater treatment. KW - Advanced wastewater treatment KW - Powdered activated carbon KW - Sewage treatment plant KW - Thermoanalysis KW - Thermogravimetry KW - Fourier transform infrared spectroscopy PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S2213343718301313 DO - https://doi.org/10.1016/j.jece.2018.03.010 SN - 2213-3437 VL - 6 IS - 2 SP - 2222 EP - 2231 PB - Elsevier CY - Amsterdam AN - OPUS4-44978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C N2 - A short description of the work done on the topic "Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C" is given. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Degradation KW - Aluminium KW - Creep KW - Coarsening PY - 2018 SN - 978-1-926872-41-4 SP - 99 AN - OPUS4-45284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - The result of an Investigation of the "Long term ageing of alloy 2618A" are discussed. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2818A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 SP - Paper 400101 AN - OPUS4-45287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - Results of the in vestigation of the "Long term ageing of alloy 2618A" were presented. T2 - ICAA 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 AN - OPUS4-45288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 DO - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Schriever, Sina A1 - Augenstein, E. A1 - Karlin, J. A1 - Piesker, Benjamin A1 - Schweizer, C. A1 - Skrotzki, Birgit T1 - Lifetime Assessment of Aluminium radial compressor wheels considering material ageing N2 - The results of the project "Lifetime Assessment of Aluminium radial compressor wheels considering material ageing" were presented. T2 - FVV Frühjahrstagung 2018 CY - Bad Neuenahr, Germany DA - 22.03.2018 KW - Alloy 2618A KW - Degradation KW - S-phase KW - Dark-field transmission electron microscopy KW - Aluminum PY - 2018 AN - OPUS4-44706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -