TY - JOUR A1 - Bordeenithikasem, Punnathat A1 - Carpenter, Kalind C. A1 - Hofmann, Douglas C. A1 - White, Victor E. A1 - Yee, Karl Y. A1 - Rizzardi, Quentin A1 - Maher, Jacob A1 - Maaß, Robert T1 - Miniaturized bulk metallic glass gripping structures for robotic mobility platforms N2 - Advancements in bulk metallic glass thermoplastic forming unleash the potential to fabricate microscale metallic features with unparalleled precision and durability, i.e. microspine gripping structures for mobility platforms on planetary or in-space robots. Four designs of grippers were fabricated and rigorously tested. Coefficient of friction on four test surfaces were measured and compared to SiC paper and Velcro. The hardness and elasticity of the bulk metallic glasses make them a game-changer in the field, offering a superior alternative to conventional nonmetallic grippers. KW - Bulk metallic glasses KW - Thermoplastic forming KW - Mobility KW - Microspine PY - 2024 DO - https://doi.org/10.1016/j.actaastro.2024.03.040 SN - 0094-5765 VL - 219 SP - 399 EP - 407 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-60182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzugan, J. A1 - Lucon, E. A1 - Koukolikova, M. A1 - Li, Y. A1 - Rzepa, S. A1 - Yasin, M.S. A1 - Shao, S. A1 - Shamsaei, N. A1 - Seifi, M. A1 - Lodeiro, M. A1 - Lefebvre, F. A1 - Mayer, U. A1 - Olbricht, J. A1 - Houska, M. A1 - Mentl, V. A1 - You, Z. T1 - ASTM interlaboratory study on tensile testing of AM deposited and wrought steel using miniature specimens N2 - An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts. In addition to AM 316L stainless steel (316L SS), a wrought highstrength steel (34CrNiMo6V, equivalent to AISI 4340) was also used. Based on the results, a precision statement in accordance with ASTM E691 standard practice was developed, intended for inclusion in a proposed annex to the ASTM E8/E8M tension testing method. The primary outcomes of the study highlighted the agreement between yield and tensile strength measured from miniature and standard-sized tensile specimens. Furthermore, most tensile properties exhibited similar standard deviations, offering users insight into the efficacy of miniature specimen applications. KW - 316L stainless steel KW - Additive manufacturing KW - High-strength steel KW - Miniature specimens KW - Tensile tests PY - 2024 DO - https://doi.org/10.1016/j.tafmec.2024.104410 SN - 0167-8442 VL - 131 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601576 DO - https://doi.org/10.1016/j.msea.2024.146690 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Christian A1 - Thore, Johannes A1 - Clozel, Mélanie A1 - Günster, Jens A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Additive manufacturing of metallic glass from powder in space N2 - Additive manufacturing of metals – and in particular building with laser-based powder bed fusion – is highly flexible and allows high-resolution features and feedstock savings. Meanwhile, though space stations in low Earth orbit are established, a set of visits to the Moon have been performed, and humankind can send out rovers to explore Venus and Mars, none of these milestone missions is equipped with technology to manufacture functional metallic parts or tools in space. In order to advance space exploration to long-term missions beyond low Earth orbit, it will be crucial to develop and employ technology for in-space manufacturing (ISM) and in-situ resource utilisation (ISRU). To use the advantages of laser-based powder bed fusion in these endeavours, the challenge of powder handling in microgravity must be met. Here we present a device capable of building parts using metallic powders in microgravity. This was proven on several sounding rocket flights, on which occasions Zr-based metallic glass parts produced by additive manufacturing in space were built. The findings of this work demonstrate that building parts using powder feedstock, which is more compact to transport into space than wire, is possible in microgravity environments. This thus significantly advances ISRU and ISM and paves the way for future tests in prolonged microgravity settings. KW - Metallic Glass KW - Additive Manufacturing KW - Space PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600667 DO - https://doi.org/10.1038/s41526-023-00327-7 VL - 9 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-60066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nawaz, Q. A1 - Blaeß, Carsten A1 - Mueller, Ralf A1 - Boccaccini, A.R. T1 - Processing and cytocompatibility of Cu-doped and undoped fluoride-containing bioactive glasses N2 - Sintered or additive-manufactured bioactive glass (BG) scaffolds are highly interesting for bone replacement applications. However, crystallization often limits the high-temperature processability of bioactive glasses (BGs). Thus, the BG composition must combine high bioactivity and processability. In this study, three BGs with nominal molar (%) compositions 54.6SiO2-1.7P2O3-22.1CaO-6.0Na2O-7.9K2O-7.7MgO (13–93), 44.8SiO2-2.5P2O3-36.5CaO-6.6Na2O-6.6K2O-3.0CaF2 (F3) and 44.8SiO2-2.5P2O3-35.5CaO-6.6Na2O-6.6K2O-3.0CaF2-1.0CuO (F3–Cu) were investigated. The dissolution and ion release kinetics were investigated on milled glass powder and crystallized particles (500–600 μm). All glasses showed the precipitation of hydroxyapatite (HAp) crystals after 7 days of immersion in simulated body fluid. No significant differences in ion release from glass and crystalline samples were detected. The influence of surface roughness on cytocompatibility and growth of preosteoblast cells (MC3T3-E1) was investigated on sintered and polished BG pellets. Results showed that sintered BG pellets were cytocompatible, and cells were seen to be well attached and spread on the surface after 5 days of incubation. The results showed an inverse relation of cell viability with the surface roughness of pellets, and cells were seen to attach and spread along the direction of scratches. KW - Bioactive glass KW - Crystallization KW - Solubility KW - Cytocompatibility KW - Surface roughness PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598257 DO - https://doi.org/10.1016/j.oceram.2024.100586 SN - 2666-5395 VL - 18 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-59825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, P. A1 - Manzoni, Anna M. A1 - Suarez Ocaño, Patricia A1 - Többens, D. M. A1 - Stephan‐Scherb, C. T1 - High‐temperature KCl‐induced corrosion of high Cr and Ni alloys investigated by in‐situ diffraction N2 - High‐temperature KCl‐induced corrosion in laboratory air was observed in situ utilizing X‐ray diffraction. High Cr‐containing model alloys (Fe‐13Cr, Fe‐18Cr‐12Ni, and Fe‐25Cr‐20Ni) were coated with KCl and exposed to dry air at 560°C. KCl‐free alloys were studied in the equivalent atmosphere as a reference. After exposure to KCl‐free environments, all alloys showed the formation of very thin oxide layers, indicating good corrosion resistance. In contrast, KCl‐bearing alloys showed distinct damage after exposure. KW - Corrosion KW - In-situ diffraction KW - High-temperature corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600831 DO - https://doi.org/10.1002/maco.202314224 SN - 0947-5117 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-60083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baesso, Ilaria A1 - Altenburg, Simon A1 - Günster, Jens T1 - Co-axial online monitoring of Laser Beam Melting (LBM) N2 - Within the perspective of increasing reliability of AM processes, real-time monitoring allows part inspection while it is built and simultaneous defect detection. Further developments of real-time monitoring can also bring to self-regulating process controls. Key points to reach such a goal are the extensive research and knowledge of correlations between sensor signals and their causes in the process. T2 - BAM workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Laser Beam Melting KW - Process Monitoring KW - Co-axial monitoring KW - 3D imaging PY - 2019 AN - OPUS4-48517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564598 DO - https://doi.org/10.1002/adma.202208653 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Undesired Foaming of Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by un-expected gas bubble formation also named foaming. Against this background, in this presentation the main aspects and possible reasons of foaming are shown for completely different glass powders: a barium silicate glass powders used as SOFC sealants, and bioactive glass powders using different powder milling procedures. Sintering and foaming were measured by means of heating microscopy backed up by XRD, differential thermal analysis (DTA), vacuum hot extraction (VHE), optical and electron microscopy, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Different densification was reached followed by significant foaming starting partly immediately, partly at higher temperature. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the milling atmosphere significantly affects the foaming of uniaxially pressed powder compacts sintered in air. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750 °C, which hints on a thermally very stable species or mechanical trapping or encapsulating of CO2. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. T2 - Seminário de Laboratório de Materiais Vítreos (LaMaV) de Departamento de Engenharia de Materiais (DEMa), Universidade Federal São Carlos UFSCar) CY - Saint Charles, Brazil DA - 06.06.2024 KW - Bioactive KW - Foaming KW - Glass KW - Crystallization KW - Viscose sintering PY - 2024 AN - OPUS4-60245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Orientierte Oberflächenkristallisation in Gläsern N2 - Bislang wird das Phänomen der orientierten Oberflächenkristallisation kontrovers diskutiert und entsprechende Studien beschränken sich auf nur wenige Gläser. Für Silikatgläser haben wir eine gute Korrelation zwischen der berechneten Oberflächenenergie von Kristallflächen und der orientierten Oberflächenkeimbildung gefunden. Die Oberflächenenergien wurden unter der Annahme abgeschätzt, dass die Kristalloberflächen bei der Keimbildung den Kristallebenen mit minimaler Energie entsprechen, denen ein Riss beim Bruch folgt. Dieses Konzept wurde am Institut für Physik in Rennes erfolgreich bei der Berechnung der Bruchflächenenergien von Gläsern angewandt. Mehrere orientierte Keimbildungsphänomene lassen sich dadurch erklären, dass man annimmt, dass Kristalloberflächen mit hoher Energie dazu neigen, von der Schmelze benetzt zu werden. Dies minimiert die gesamte Grenzflächenenergie des Keims. Darüber hinaus werden wir die Entwicklung der Mikrostruktur beim weiteren Kristallwachstum und ihre Auswirkungen auf die bevorzugte Kristallorientierung diskutieren. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Oberflächenkeimbildung KW - Kristallorientierung KW - Grenzflächenenergie PY - 2024 AN - OPUS4-60237 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 DO - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Niedrigsinterndes CaMnO3 für thermoelektrische Anwendungen N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. N2 - Thermoelektrische Materialien können durch die Nutzung des Seebeckeffektes einen Temperaturunterschied direkt in eine Spannung umwandeln. Calciumcobaltit (p-typ) und Calciummanagant (n-typ) sind 2 der vielversprechendsten oxidischen thermoelektrischen Materialien. Für die Entwicklung von kostengünstigen Multilayergeneratoren ist das Co-sintern dieser beiden Materialien notwendig und deshalb eine Anpassung der Sintertemperatur nötig. Calciummangant wird herkömmlicherweise zwischen 1200°C und 1350°C gesintert. Calciumcobaltit erfährt einen ungewünschte Phasenumwandlung bei 926°C, es kann allerding bei 900°C unter 7.5MPa zu 95% dicht gesintert werden. Demzufolge, ist eine Co-sintertemperatur von 900°C anzustreben. Aus diesem Grund wurden mehrere Strategien zur Absenkung der Sintertemperatur von Calciummanaganat untersucht. Zum einen die Zugabe niedrigschmelzender Additive, zum anderen die Zugabe von Additiven, die eine eutektische Schmelze bilden. Es konnte gezeigt werden, dass für Calciummanganat die Verwendung von eutektischen Schmelzen besser geeignet ist als die Verwendung von niedrigschmelzenden Additiven um die Sintertemperatur zu senken.“ T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 22.06.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-45281 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Mieller, Björn T1 - Thermoelectric multilayer generators: development from oxide powder to demonstrator N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on ceramic multilayer technology are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. But, co-firing of promising oxide thermoelectric materials, Ca3Co4O9 (p-type) and CaMnO3 (n-type), is very challenging due to the large difference in sintering temperature (300 K). In this work we show the material development of Ca3Co4O9, CaMnO3, and insulation for multilayer generators co-fired under uniaxial pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Tape-casting and pressure assisted sintering are applied to fabricate textured Ca3Co4O9. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10 and the power factor by the factor of 20. The combination of sintering additives and uniaxial pressure is used to decrease the sintering temperature of CaMnO3 to 900 °C while maintaining acceptable thermoelectric properties. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding microstructure and thermoelectric performance. A lower level of complexity is beneficial for co-firing and performance. The unileg demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Thermoelectrics KW - Multilayer technology KW - Co-firing KW - Texture PY - 2022 AN - OPUS4-55357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Koppert, R. A1 - Mieller, Björn T1 - Thin-film capability of commercial LTCC N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. The deposited thin-films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin-film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC compositions and surface qualities. To evaluate the influence of the material composition on the thin film capability, 200 nm Ni-thin films were deposited on three different constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The effect of surface quality was assessed by thin-film deposition on free-sintered, pressure-assisted sintered, and polished DP951. The thin-films were structured by covering corresponding sections with a UV-curable photo resin and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin films showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas CT800 had a high sheet resistance and a failure rate of 40 %. These results are correlated with surface roughness of the LTCC, scanning electron micrographs of the deposited thin-films, and the chemical resistance of the LTCC against commonly used etching media. Contrary to the expectations, no correlation between roughness and thin-film capability was found. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. Additionally, the adhesion of thin-films on DP951 is better than on CT708 and CT800. T2 - XVIII EcerS Conference & Exhibition CY - Lyon, France DA - 02.07.2023 KW - Glass-ceramics KW - Etching KW - Resistance PY - 2023 AN - OPUS4-58019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Material development for oxide multilayer generators N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on low-temperature co-fired ceramics technology (LTCC) are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. Pressure-assisted sintering enables the theoretical possibility of co-firing two promising oxide thermoelectric materials: Ca3Co4O9 (p-type) and CaMnO3 (n-type). Due to the large difference in sintering temperature (300 K) the process is very challenging. In this work we show the material development of Ca3Co4O9, CaMnO3, insulation and metallization for multilayer generators co-fired under pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding crack formation, interaction layers and thermoelectric performance. Simulated stresses during cooling in the multilayers are compared with actual crack formation for different sintering conditions. This study shows that a lower pressure level and a lower level of complexity are beneficial for co-firing and performance. T2 - 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC 2021 Virtual) CY - Online meeting DA - 08.02.2021 KW - Thermoelectrics KW - Multilayer PY - 2021 AN - OPUS4-52462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Improved thermoelectric properties of CaMnO3 and Ca3Co4O9 by increasing the driving force for sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (Ca3Co4O9, p-type) and calcium manganate (CaMnO3, n-type) are two of the most promising oxide thermoelectric materials. The performance of these materials is evaluated by the power factor PF = S²∙σ and the figure of merit ZT = (PF ∙ T) / κ, demanding high Seebeck coefficient S, high electrical conductivity σ and low thermal conductivity κ. The latter two are increasing with increasing relative sinter density. According to theory, the relative density of ceramics can be improved by increasing the driving force for sintering. This study investigates different approaches to increase the driving force for sintering of Ca3Co4O9 and CaMnO3 to improve densities and thermoelectric properties. The following approaches were applied: minimizing the energy input during powder synthesis by calcination, fine milling of the powder, using reaction-sintering without a powder synthesis step, and adding a transient liquid phase by sinter additives. All different approaches led to an increased densification and thus higher electrical conductivity and higher PF. Thermal conductivity increased as well but not to the same extent. E.g. reaction-sintering increased the densification of Ca3Co4O9 (p-type) and CaMnO3 (n-type). Consequently, the electrical conductivities improved by about 100 % for both oxides leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Although the thermal conductivity increased as well by 8 %, the figures of merit (ZT) were significantly higher compared to conventionally sintered bars. The addition of 4 wt% CuO as a sinter additive to CaMnO3 lowers the sinter temperature from above 1250 °C to below 1100 °C and increases the relative density. Due to the increased density, both electrical conductivity and PF increased by more than 200 % even though the sintering temperature was 150 K lower. T2 - Electroceramics XVII CY - Online meeting DA - 24.08.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives PY - 2020 AN - OPUS4-51163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Lindemann, Franziska A1 - Koppert, Ralf A1 - Mieller, Björn T1 - Chemical resistance of commercial LTCC against thin film etching media N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate robust multilayer circuits. Typically, thick-film technology is applied for metallization. For specific sensor applications, thin films are deposited directly on the as-fired LTCC-surface. These deposited thin films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. 200 nm Ni-thin films were deposited on three different commercial constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The thin-films were structured by covering corresponding sections with a UV-curable photo resisn and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin film showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas the CT800 had a failure rate of 40 %. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. To address this phenomenon, the chemical resistance of the three different commercial LTCC (CT708, CT800 and DP951) against four different commonly used etching media (sulphuric acid, phosphoric acid, aqua regia, and hydrofluoric acid) is investigated. The dissolved ions are analyzed by ICP-OES to correlate the LTCC-composition and its chemical resistance. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Glass-ceramics KW - Hydrogen sensors KW - Acids PY - 2023 AN - OPUS4-57273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Reimann, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Texturing of calcium cobaltite for thermoelectric applications by pressure assisted sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite (CCO) is considered as a promising thermoelectric p-type oxide for energy harvesting applications at temperatures above 500 °C. The properties and morphology of single-crystal CCO are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties of the grains can be assigned to the poly-crystalline parts. In this study, the combination of tape casting and pressure-assisted sintering is used to texture and densify large scale components (50 cm²). Thereby, the influence of powder preparation and applied pressure during sintering on texturing and thermoelectric properties is investigated. The analysis of XRD pole figures revealed that tape casting already leads to highly textured CCO. By pressure variation during sintering, the microstructure of CCO can be tailored either toward maximum power factor as required for energy harvesting or toward maximum figure of merit as required for energy recovery. Low pressure lead to a porous microstructure and maximum figure of merit and higher pressure to full densification and maximum power factor. The electrical and thermal conductivity of CCO seem depending on both texture and sinter density. T2 - KERAMIK 2021 / CERAMICS 2021 CY - Online meeting DA - 19.04.2021 KW - Thermoelectrics KW - Hot pressing KW - Pole figures PY - 2021 AN - OPUS4-52490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Reaction sintering and sintering additives for cost-effective production of thermoelectric oxides N2 - Thermoelectric oxides attract much interest recently. Although their thermoelectric properties are inferior to non-oxides, they exhibit distinct advantages. Thermoelectric oxides are stable in air at higher temperatures, their raw materials are less toxic, and more abundant. To enhance attractivity of these materials for industrial applications, production costs need to be reduced. Conventionally, the legs of thermoelectric generators are sintered from green bodies of previously synthesized powder. Reaction-sintering is a fabrication method without a powder synthesis step, as the final phase is formed during the sintering from a raw material mixture. Moreover, the reduction of chemical potential during reaction-sintering is effective as an additional driving force for sintering. We show that reaction-sintering increases the densification of CaMnO3 (n-type, Sm doped). Consequently, the electrical conductivities improved by about 100 % leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Another approach to reduce the production costs is to lower the sintering temperature by adding sinter additives. The addition of 4 wt% CuO to CaMnO3 lowers the sinter temperature from 1250 °C to 1050 °C. The achieved power factor PF = 264 µW/mK is more than two times higher as reported in literature for the same dopant. T2 - Virtual Conference on Thermoelectrics (VCT) CY - Online meeting DA - 21.07.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives KW - Calcium manganate KW - Calcium cobaltite PY - 2020 AN - OPUS4-51070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Giovanelli, F. A1 - Rabe, Torsten T1 - Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite N2 - Calcium cobaltite (Ca3Co4O9) is considered as one of the most promising thermoelectric p-type oxides for energy harvesting applications at temperatures above 500 °C. It is challenging to sinter this material as its stability is limited to 920 °C. To facilitate a practicable and scalable production of Ca3Co4O9 for multilayer generators, a systematic study of the influence of powder calcination, Bi-doping, reaction sintering, and pressure-assisted sintering (PAS) on microstructure and thermoelectric properties is presented. Batches of doped, undoped, calcined, and not calcined powders were prepared, tape-cast, and sintered with and without uniaxial pressure at 900 °C. The resulting phase compositions, microstructures and thermoelectric properties were analysed. It is shown that the beneficial effect of Bi-doping observed on pressureless sintered samples cannot be transferred to PAS. Liquid phase formation induces distortions and abnormal grain growth. Although the Seebeck coefficient is increased to 139 µV/K by Bi-doping, the power factor is low due to poor electrical conductivity. The best results were achieved by PAS of calcined powder. The dense and textured microstructure exhibits a high power factor of 326 µW/mK² at 800 °C but adversely high thermal conductivity in the relevant direction. The figure of merit is higher than 0.08 at 700 °C. KW - Ceramics KW - Calcium cobaltite KW - Thermoelectric properties KW - Calcination KW - Pressure-assisted sintering PY - 2019 DO - https://doi.org/10.1063/1.5107476 SN - 0021-8979 VL - 126 IS - 7 SP - 075102-1 EP - 075102-11 PB - AIP Publishing CY - Melville AN - OPUS4-48708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Delorme, F. A1 - Chen, C. A1 - Bektas, M. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of Reaction-Sintering and Calcination Conditions on Thermoelectric Properties of Sm-doped Calcium Manganate CaMnO3 N2 - A wide range of solid-state synthesis routes for calcium manganate is reported in the literature, but there is no systematic study about the influence of the solid-state synthesis conditions on thermoelectric properties. Therefore, this study examined the influence of calcination temperature and calcination cycles on the Seebeck coefficient, electrical conductivity, and thermal conductivity. Higher calcination temperatures and repeated calcination cycles minimized the driving force for sintering of the synthesized powder, leading to smaller shrinkage and lower densities of the sintered specimens. As the electrical conductivity increased monotonously with increasing density, a higher energy input during calcination caused deterioration of electrical conductivity. Phase composition and Seebeck coefficient of sintered calcium manganate were not influenced by the calcination procedure. The highest thermoelectric properties with the highest power factors and figures of merit were obtained by means of reaction-sintering of uncalcined powder. KW - Thermoelectric oxides KW - Calcination KW - Solid-state-synthesis KW - Power factor KW - Reaction-sintering PY - 2018 DO - https://doi.org/10.4416/JCST2018-00017 SN - 2190-9385 VL - 9 IS - 3 SP - 289 EP - 300 PB - Göller Verlag AN - OPUS4-46224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Portella, Pedro Dolabella T1 - Structured heating in active thermography by using laser arrays N2 - Lock-in- and flash thermography are standard methods in active thermography. They are widely used in industrial inspection tasks e.g. for the detection of delaminations, cracks or pores. The requirements for the light sources of these two methods are substantially different. While lock-in thermography requires sources that can be easily and above all fast modulated, the use of flash thermography requires sources that release a very high optical energy in the very short time. By introducing high-power vertical cavity surface emitting lasers (VCSELs) arrays to the field of thermography a source is now available that covers these two areas. VCSEL arrays combine the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination range of flash lamps or LEDs and can thus potentially replace all conventional light sources of thermography. However, the main advantage of this laser technology lies in the independent control of individual array areas. It is therefore possible to heat not only in terms of time, but also in terms of space. This new degree of freedom allows the development of new NDT methods. We demonstrate this approach using a test problem that can only be solved to a limited extent in active thermography, namely the detection of very thin, hidden defects in metallic materials that are aligned vertically to the surface. For this purpose, we generate destructively interfering thermal wave fields, which make it possible to detect defects within the range of the thermal wave field high sensitivity. This is done without pre-treatment of the surface and without using a reference area to depths beyond the usual thermographic rule of thumb. T2 - ConaEnd&Iev 2018 CY - Sao Paulo, Brazil DA - 27.08.2018 KW - VCSEL KW - Active thermography KW - Laser KW - Structured heating KW - Subsurface defects PY - 2018 AN - OPUS4-45851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hajian, A. A1 - Konegger, T. A1 - Bielecki, K. A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Schwarz, S. A1 - Zellner, C. A1 - Schmid, U. T1 - Wet chemical porosification with phosphate buffer solutions for permittivity reduction of LTCC substrates N2 - The wireless high-frequency technology requires a robust, cost-effective, and highly integrated substrate technology offering the capability for areas of tailored permittivity. The wet-chemical porosification of low temperature co-fired ceramics (LTCC) substrates offers such an approach by locally embedding air. Porosification of LTCC in both extremely acidic and alkaline media has been investigated in previous works. However, for improving the available knowledge on the porosification of LTCC with H3PO4 as a standard and a widely used etching solution, the impact of solution concentration was systematically investigated and a substantial improvement in the etching performance was achieved. Moreover, in the present study, for the first time, the intermediate pH values, and the impact of pH as a key parameter on the etching process have been investigated. For this purpose, the applicability of phosphate buffer solution (PBS) as a prospective novel etchant mixture for the porosification of a commercially available LTCC tape (Ceramtape GC) was explored. Valuable information about surface morphology, crystalline composition, and the pore structure of the etched LTCCs was gathered employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and mercury porosimetry measurements. Based on these findings, the performance of PBS-based etchant systems towards the generation of porous LTCCs combining high depths of porosification with acceptable surface characteristics for subsequent metallization is demonstrated. Based on the obtained results, by application of a 0.2 mol L−1 solution of PBS, the effective relative permittivity of test samples with a thickness of approximately 600 µm and a porosification depth of 186 µm from each side, could be reduced up to 10% of its initial “as fired” value. Also, based on the measurement results and by measuring the depth of porosification, the permittivity of the etched layer was estimated to show a reduction of up to 22% compared to the initial “as fired” value. KW - LTCC KW - Porosification KW - Wet chemical etching KW - Permittivity reduction PY - 2020 DO - https://doi.org/10.1016/j.jallcom.2020.158059 SN - 0925-8388 VL - 863 SP - 158059 PB - Elsevier B.V. AN - OPUS4-51800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Making materials (digital) - Keramik N2 - Der Vortrag gibt einen Überblick über die Materialklasse Keramik, insbesondere Technische Keramik. Nach einem kurzen Überblick über typische Anwendungen und Werkstoffe wird die keramische Prozesskette erläutert. Am Beispiel von Festigkeit wird der für Keramik typische, enge Zusammenhang zwischen Technologie, Mikrostruktur und Eigenschaften herausgearbeitet. Daraus werden Anforderungen für eine erfolgreiche Digitalisierung abgeleitet. T2 - Workshop "STREAM" - Semantische Repräsentation, Vernetzung und Kuratierung von qualitätsgesicherten Materialdaten CY - Darmstadt, Germany DA - 26.09.2022 KW - Keramik KW - Festigkeit KW - Überblick PY - 2022 AN - OPUS4-55859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Herstellung und Charakterisierung keramischer Federn N2 - Aufgrund ihres spezifischen Eigenschaftsprofils sind keramische Federn attraktiv für Spezialanwendungen in Maschinenanlagen, Metrologie und Sensortechnik. Durch Hartbearbeitung keramischer Hohlzylinder können Spiralfedern mit rechteckigem Windungsquerschnitt präzise gefertigt werden. Dabei kann durch gezielte Auslegung der Federgeometrie die Federkonstante über mehrere Größenordnungen variiert werden. Der Vortrag gibt einen Überblick über den Herstellungsprozess, verschiedene Eigenschaften keramischer Federn und Anwendungsbeispiele. T2 - Industrieller Arbeitskreis Keramikbearbeitung CY - Online meeting DA - 08.04.2022 KW - Keramik KW - Hartbearbeitung KW - Federkonstante PY - 2022 AN - OPUS4-54623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Slurry development for spray granulation of ceramic multicomponent batches N2 - The granules commonly yielded by spray drying procedures exhibit a hard shell and an irregular, dimpled shape, which is often described as donut-like morphology. Sintered parts produced from such granules suffer from microstructural defects and reduced mechanical properties resulting from these disadvantageous granule properties. Using the example of alumina, zirconia and zirconia-toughened alumina (ZTA) batches, this paper shows that the morphology of the granules can be tuned by adjusting slurry stability. High zeta potential is essential to optimally disperse the particles. But to achieve spherical and soft granules the electrostatic repulsion forces between the particles should be reduced before spray granulation. Electrostatic repulsion forces were changed with the addition of nitric acid. Measurements of zeta potential and viscosity, as well as sedimentation investigations with an optical centrifuge were used for precise slurry assessment as a major precondition for optimal and reproducible adjustment of slurries before spray drying. Sedimentation analysis using an optical centrifuge was performed to investigate different influences like that of additive composition, solids content or pH-value on the sedimentation behavior. Adequately flocculated slurries lead to homogeneous, soft granules that can be easily deformed and pressed. The fraction of donut-shaped particles and the rigidity of granules were reduced. Consequently, the sintered parts produced from these granulates show improvements regarding porosity, pore size distribution, sintered density and biaxial strength. KW - Slurry optimization KW - Optical centrifugation KW - Destabilization KW - Spray drying KW - Biaxial strength PY - 2018 DO - https://doi.org/10.4416/JCST2018-00022 SN - 2190-9385 VL - 9 IS - 3 SP - 327 EP - 336 PB - Göller Verlag AN - OPUS4-46225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. A1 - Czasny, M. A1 - Kober, D. A1 - Reschetnikow, A. A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Gurlo, A. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Rabe, Torsten T1 - Tailoring the spring constant of ceramic helical compression springs N2 - Ceramic springs combine attractive properties for applications in machinery, metrology, and sensor technology. They are electrically insulating, non-magnetic, provide a linear stress-strain behavior, and are stable at high temperatures and in corrosive environments. Generally, the precise dimensioning of a ceramic spring with respect to the spring constant is challenging. Different models are described, but many of these calculations do not match the actual spring properties. We demonstrate a reliable approach for the dimensioning and manufacturing of helical compression springs with a rectangular winding cross-section. Based on the German standard DIN 2090, which is referring to metallic springs, the spring constant can be calculated based on shear modulus, diameter, height, widths, and number of windings. Different ceramic springs were produced by milling of sintered hollow cylinders of zirconia, alumina and silicon nitride. The experimental spring constants are in very good agreement with the calculated values. Spring constants of zirconia springs were varied over three orders of magnitude between 0.02 N/mm and 5 N/mm by purposeful adaption of the spring geometry. The combination of dimensioning based on DIN 2090 and precise hard machining offers a reliable technology for the fabrication of tailored ceramic springs for special applications. T2 - 45th International Conference and Exhibition on Advanced Ceramics and Composites (ICACC 2021) CY - Online meeting DA - 08.02.2021 KW - Ceramics KW - Hard machining KW - Spring constant PY - 2021 AN - OPUS4-52136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - Correlative Materials Characterization Workshop 2023 CY - Brno, Czech Republic DA - 09.11.2023 KW - Tomography KW - X-ray imaging KW - Li-ion battery PY - 2023 AN - OPUS4-58958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Electric field distribution on ceramic samples during dielectric strength testing N2 - The dielectric breakdown strength of ceramics strongly depends on the test conditions. Thus, standardized test procedures and thorough documentation are indispensable. However, during dielectric strength testing the breakdown often occurs near the electrode edge or even outside the specified electrode area. This behavior is similarly observed for printed and cylindrical electrodes. The aim of the presented study was to calculate the electric field strength distribution in a ball-on-plate testing setup for metallized samples and to correlate the field distribution with the observed breakdown locations. Small misalignments in the test setup were also considered in the simulations. Furthermore, the field strength at the breakdown Location should be compared to the experimentally determined dielectric strength. Therefore, Finite Element Models of several test conditions with varying printed electrode areas and sample thicknesses were created and electrostatic calculations of the electric field Distribution were performed. The simulation results were compared to experimental data. Alumina (96 %) was used as test material. The calculations show that the electric field strength maxima match the experimentally observed locations of breakdown. Without any fitting of the model, the maximum calculated field strength is in reasonable agreement with the experimental dielectric strength. The FE analysis is a helpful tool to understand the observations in experimental dielectric strength testing. T2 - CERAMICS 2021 / 96th DKG Annual Meeting CY - Online Meeting DA - 19.04.2021 KW - Dielectric breakdown KW - Dielectric strength KW - Electric field strength KW - Ceramics PY - 2021 AN - OPUS4-52512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -