TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Intermittent microplasticity in the presence of a complex microstructure N2 - We demonstrate the gradual shift from scale-free intermittent microplasticity to a scale-dependent behavior via the introduction of a variety of microstructural features within the Al-Cu binary alloy system. As long as the obstacles to dislocation motion remain shearable, the statistics of intermittent microplasticity has fat-tailed contributions. The introduction of incoherent precipitates leads to a complete transition from scale-free powerlaw scaling to an exponential and scale-dependent distribution. These results demonstrate how non-Gaussian interactions survive across different microstructures and further suggest that characteristic microstructural length scales and obstacle pinning-strengths are of secondary importance for the intermittency statistics, as long as dislocations can shear their local environment. KW - Scale-dependent behavior KW - Al-Cu binary alloy system PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.073602 SN - 2475-9953 VL - 6 IS - 7 SP - 1 EP - 9 PB - American Physical Society AN - OPUS4-55387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Grain boundary structural variations amplify segregation transition and stabilize co-existing spinodal interfacial phases N2 - Grain boundaries (GBs)’s role in determining the functional and mechanical properties of polycrystalline materials is inscribed in both their structure and chemistry. Upon solute segregation, the structure and composition of a GB can change concurrently. We study the co-evolution of GB’s structure and segregation by enhancing the density-based phase-field model to account for the in-plane structural variations in the GB. Significant mutual coupling is revealed between the GB’s chemical and structural states during Mn segregation in Fe-Mn alloys. We found that the structural degrees of freedom in a GB (the ability of the GB structure to respond to the chemical variation) amplifies Mn segregation transition, even when the GB structure stays unchanged. When the GB structure is not uniform, that is the usual case, the coupling between GB structure and segregation evolution also enables the spinodally formed low- and high-Mn phases (upon segregation transition) to co-exist within the GB region. These findings explain the stabilizing mechanism of pronounced interfacial segregation fluctuations, experimentally evidenced in Fe-Mn GBs, and give new insights on the structural sensitivity of GBs’ segregation phenomena and the mutual chemo-structural interplay. KW - Grain boundary engineering KW - Segregation engineering KW - Grain boundary structure KW - Fe-Mn steels PY - 2022 DO - https://doi.org/10.1016/j.actamat.2022.118446 SN - 1359-6454 VL - 242 PB - Elsevier Ltd. AN - OPUS4-56160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maximilian, Thuy A1 - Spyrantis, Alexander A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Maaß, Robert T1 - Spatially resolved roughness exponent in polymer fracture N2 - The fracture surface of slow and continuous crack propagation during environmental stress cracking of a semicrystalline polyethylene exhibits isotropic roughness exponents at the local scale but resolved across the macroscopic fracture surface a clear position dependence is found. The spatially resolved roughness exponent admits values in the range between 0.1 and 0.4, demonstrating nontrivial exponents in the small length-scale regime. Instead, they vary across the fracture surface according to the stress-state distribution, which suggests that the exponents are intimately linked to the locally dominating dissipation processes during craze cracking. KW - Plasticity KW - Fracture KW - Material failure KW - Mechanical deformation PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.L090601 VL - 6 IS - 9 SP - 1 EP - 7 PB - American Physical Society CY - USA, Maryland AN - OPUS4-55797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shimada, Y. A1 - Ikeda, Yuki A1 - Yoshida, K. A1 - Sato, M. A1 - Chen, J. A1 - Du, Y. A1 - Inoue, K. A1 - Maaß, Robert A1 - Nagai, Y. A1 - Konno, T. T1 - In situ thermal annealing transmission electron microscopy of irradiation induced Fe nanoparticle precipitation in Fe–Si alloy N2 - The typical experimental conditions inside a transmission electron microscope (TEM), such as ultra-high vacuum, high-energy electron irradiation, and surface effects of ultrathin TEM specimens, can be the origin of unexpected microstructural changes compared with that of bulk material during in situ thermal-annealing experiments. In this paper, we report on the microstructural changes of a Fe–15%Si alloy during in situ TEM annealing, where, in its bulk form, it exhibits an ordering transformation from D03 to B2 at 650 °C. Using a heating-pot type double tilt holder with a proportional–integral–differential control system, we observed the precipitation of α-Fe both at the sample surface and inside the sample. Surface precipitates formed via surface diffusion are markedly large, several tens of nm, whereas precipitates inside the specimen, which are surrounded by Fe-poor regions, reach a maximum size of 20 nm. This unexpected microstructural evolution could be attributed to vacancies on Si sites, which are induced due to high-energy electron irradiation before heating, as well as enhanced thermal diffusion of Fe atoms. KW - In situ thermal-annealing experiment KW - Microstructural changes of a Fe Si alloy KW - Microstructural evolution PY - 2022 DO - https://doi.org/10.1063/5.0070471 SN - 0021-8979 VL - 131 IS - 16 SP - 1 EP - 8 PB - AIP Publishing AN - OPUS4-54728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Nishijima, M. A1 - Kiguchi, T. A1 - Konno, T. T1 - Crystal structure characterization of martensite of Cu–Zn–Al ternary alloy by spherical aberration corrected scanning transmission electron microscopy N2 - The crystal structure of martensite in Cu-27at.%Zn-9.0 at.%Al alloy has been studied by using sphericalaberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometrical phase analysis (GPA) to examine possible changes in atomic rearrangements during martensitic transformation of this ternary system. Observation along [100]M zone axis is suitable for examining a chemical order of the martensite, and showed that, despite the non-stoichiometry of the alloy, atomic columns containing Al atoms are imaged and distinguished from the others. On the other hand, observation along [010]M zone axis directly revealed that the parent and martensitic phases possess L21 and 18R (21) structures, respectively. These observations suggested that the martensite retained the local chemical order of the parent phase without shuffling before and after the transformation. GPA revealed that the interface between the two phases was coherent with tilting of the basal plane approximately 6◦ across the boundary, which makes otherwise large inclination small during the martensitic transformation. KW - Shape-memory alloys KW - Martensitic transformation KW - Martensitic structure KW - Electron microscopy, transmission PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107286 SN - 0966-9795 VL - 137 PB - Elsevier Ltd. AN - OPUS4-53076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - The Federal Institute of Materials Research and Testing (BAM) – 150 Years of Enabling Scientific and Technological Breakthrough N2 - BAM! This issue of Advanced Engineering Materials celebrates 150 years of scientific and technical research at the interface between academia, industry and politics. Rooted in 1871 at the birth of the German Empire and at that time located in simple basements and barracks, the institutional development began around mechanical metallurgy of iron and steel and represents today a diverse portfolio of fore-front research that orients itself along tomorrow's societal challenges and long-term research horizons. KW - 150 Years KW - Adolf Martens PY - 2022 DO - https://doi.org/10.1002/adem.202200648 VL - 24 IS - 6 SP - 1 EP - 3 PB - Wiley-VCH GmbH AN - OPUS4-55388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Crafting High-Quality, Reliable, and FAIR Data: From Metadata, Schema and Ontologies to Data Management and Knowledge Transfer N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. In this respect, the motivation for digital transformation in materials sciences stemming from the need to handle the ever-increasing volume and complexity of data will be elaborated on. By embracing digital tools and methodologies, researchers can enhance the efficiency, accuracy, and reproducibility of their work. The benefits of digital transformation in materials sciences are manifold, including improved data management, enhanced collaboration, and accelerated innovation. Being a core component of this transformation, ensuring data reliability and reproducibility is critical for the advancement of the field, enabling researchers to build on each other's work with confidence. Implementing FAIR data principles facilitates this by making data more accessible and usable across different platforms and studies. Furthermore, Semantic Web technologies (SWT) and ontologies play a crucial role in achieving these goals. Ontologies, typically consisting of the T-Box (terminological component) and A-Box (assertional component), provide a structured framework for representing knowledge. This presentation will outline the path of ontology creation and the formal transformation procedure, highlighting the various ontology levels that organize data into meaningful hierarchies. Real-world use cases presented, such as the Tensile Test Ontology (TTO) and the Orowan Demonstrator, illustrate the practical applications of these technologies. These examples will demonstrate how ontologies can be leveraged to standardize data and facilitate interoperability between different systems and research groups. Finally, in this presentation, Ontopanel is introduced, a tool designed to aid in the creation and management of ontologies. Ontopanel simplifies the process of developing and maintaining ontologies, making it accessible to researchers and practitioners in the field. By integrating these technologies and principles, the materials science community can move towards a more digital, interconnected, and efficient future making the knowledge and education on these topics very valuable. T2 - MaRDA MaRCN FAIR Train Workshop CY - Washington, DC, USA DA - 29.07.2024 KW - FAIR KW - Metadata KW - Digitalization KW - Data Interoperability KW - Ontology KW - Education KW - Workshop PY - 2024 AN - OPUS4-60720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an experimentalist's hard search for free volume N2 - This talk was given in honor of Prof. Frans Spaepen, faculty at Harvard University, at the occasion of his Staudinger Lecture and his honorary doctorate degree reception at ETH Zurich. It covers a 10 year long journey of how an experimentalist probes free-volume effects in metallic glasses. T2 - Symposium in honor of Frans Spaepen Honorary Doctorate ETH Zurich CY - Zurich, Switzerland DA - 08.12.2023 KW - Metallic glass KW - Deformation KW - Shear bands PY - 2023 AN - OPUS4-60717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Probing internal damage in glassy metals N2 - This talk covers strain localization in metallic glasses and how it can be probed non-destructively using acoustic emission and x-ray methods. The results are compared to other methods and contextualized in the context of shear-band dynamics during inhomogeneous flow of metallic glasses. T2 - Seminar Zerstörungsfreie Prüfung TU München 2023 CY - Online meeting DA - 29.06.2023 KW - Metallic glass KW - Deformation KW - Acoustic emission PY - 2023 AN - OPUS4-60718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Temperature-dependent intermittent plasticity of Nb microcrystals N2 - Intermittent microplasticity via dislocation avalanches indicates scale-invariance, which is a paradigm shift away from traditional bulk deformation. Recently, we have developed an experimental method to trace the spatiotemporal dynamics of correlated dislocation activity (dislocation avalanches) in microcrystals (Phys. Rev. Mat. 2 (2018) 120601; Phys. Rev. Mat. 3 (2019) 080601). Here we exploit the temperature sensitive deformation of bcc metals. A marked change of the slip-size distribution is observed in the studied microcrystals, with increasingly small event-sizes dominating with decreasing temperature. This shows how a reduction in thermal energy increasingly suppresses the length-scale of dislocation avalanches, indicating how long-range correlations become gradually limited to the scale of the lattice. Our results further show that the stress-strain response is composed of strain-increments that are either thermally activated or essentially athermal. Temperature-dependent small-scale testing in combination with state-of-the-art discrete dislocation dynamics (DDD) simulations of Nb microcrystals are used to reveal these insights. T2 - MS&T20 Virtual CY - Online meeting DA - 02.11.2020 KW - Microcrystals PY - 2020 AN - OPUS4-60700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Tracing structural dynamics in metallic glasses during cryogenic cycling N2 - Highly unrelaxed structural states of metallic glasses have often advantageous mechanical properties. Since metallic glasses continuously relax with time (age) or inherently are well relaxed after processing, methods to uniformly rejuvenate the material are needed. One approach that has received attention is the so-called cryogenic-cycling method, during which a metallic glass is repeatedly immersed into liquid nitrogen. In some cases, cryogenic cycling is truly efficient in increasing the stored excess enthalpy of metallic glasses, but it does not seem to be universally applicable to all alloys and structural states. The origins for these differences remain unclear due to our limited understanding of the underlying structural evolution. In order to shed more light onto the fundamental structural processes of cryogenic cycling, we pursue in-situ x-ray photon correlation spectroscopy (XPCS) to trace the atomic-scale structural dynamics of a Zr-based metallic glass in two different structural states (ribbon and bulk metallic glass). This method allows calculating the relaxation times as a function of time throughout the thermal cycling. It is found that the investigated glasses exhibit heterogeneous structural dynamics at 300 K, which changes to monotonic aging at 78 K. Cryogenic cycling homogenizes the relaxation time distribution for both structural states. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with long-time average structural relaxation times irrespective of the state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. Overall, a picture emerges that points towards heterogeneities in fictive temperature as a requirement for cryogenic energy storage. T2 - MRS Fall 2020 - Invited Talk CY - Boston, MA, USA DA - 27.11.2020 KW - Relaxation metallic glasses PY - 2020 AN - OPUS4-59542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data of Creep of Ni-Based Superalloys Exemplified for CMSX-6 N2 - The identification of process-structure-property relationships of materials inevitably requires the combination of research data from different measurements. Therefore, the concepts related to FAIR (findable, accessible, interoperable, reusable) data handling, increasingly reported in literature, are particularly important in the materials science and engineering domain. However, they have not yet been integrated into a single, overarching methodological framework, particularly for reference data. Here, we introduce such a framework, which covers data generation, documentation, handling, storage, sharing, data search and discovery, retrieval, and usage. Furthermore, we prototypically implement it using a real dataset with creep data of a single-crystal CMSX-6 Ni-based superalloy. The implementation is traceable and permanently accessible through open repositories. The individual elements considered in the framework ensure the functionality and usability of the data and, thus, the adherence to the FAIR principles. In conjunction with this, we present a definition for reference data of materials. Our definition underlines particularly the importance of a comprehensive documentation, e.g., on material provenance, data processing procedures, and the software and hardware used, including software-specific input parameters, as these details enable data users or independent parties to assess the quality of the datasets and to reuse and reproduce the results. Reference data that is managed according to the proposed framework can be used to advance knowledge in the materials science and engineering domain, e.g., by identifying new process-structure-property relations. T2 - TMS 2025 Annual Meeting & Exhibition CY - Las Vegas, NV, USA DA - 22.03.2025 KW - Referenzdaten KW - Creep KW - Data schema KW - NFDI-MatWerk PY - 2025 AN - OPUS4-62849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wallis, Theophilus T1 - Density-Based Phase-Field Modeling of Grain Boundary Segregation and Structural Transitions N2 - Polycrystalline materials are central to everyday engineering applications and technological advancements. The mechanical and functional properties of these materials can be influenced either negatively or positively by the presence of grain boundaries (GBs). These properties are interconnected with the structure, chemistry, or a combination of both (referred to as chemo-structure) at the GB. Therefore, an in-depth understanding of GBs, and their associated phenomena is key to tuning these materials properties for desired applications. Nevertheless, the intricate and unique characteristics of GBs impose constraints on their general descriptions in existing models designed for studying and understanding them. In this dissertation, a comprehensive tool, the CALPHAD-integrated density-based phase-field (DPF) model \cite{darvishikamachali2020model}, that harnesses atomic-scale GB characteristics, is employed and extended to reveal a deeper understanding of the GB structure, chemistry, chemo-structural coupling and their potential contributions to GB phenomena such as GB structural (and/or chemo-structural) transitions and liquid metal embrittlement. Although GBs possess distinctive crystallographic properties that render them unique and individualistic, it is important to note that they cannot exist independently; rather, they are made of the same constituents as the corresponding bulk material. To this end, the DPF model uses a continuous atomic density field ($\rho$), derived from atomistic simulations, to characterize the GB with reference to its corresponding homogeneous bulk (grain interior). This perspective allows the DPF model to approximate the GB free energy functional based on available bulk thermodynamic data. The DPF model has been utilized to investigate a variety of systems, form unary to multi-component systems \cite{kamachali2024giant,darvishikamachali2020model,darvishikamachali2020segregation,wang2021density,li2020grain,wang2021incorporating,zhou2021spinodal}. Among several novelties in the elucidation of the thermodynamics and kinetics of GBs, the DPF model has shown that GBs can have their own miscibility gap. It further reveals a temporal co-evolution of low and high segregation levels at the GB, which can act as precursor states for the formation of new phases \cite{kwiatkowskidasilva2018phase, kwiatkowskidasilva2019thermodynamics}. In the recent publication on Fe-Mn \cite{darvishikamachali2020segregation} and in various other works \cite{kamachali2024giant,darvishikamachali2020model,darvishikamachali2020segregation,wang2021density,li2020grain,wang2021incorporating,zhou2021spinodal, ikeda2023segregation, ahmadian2023interstitial} of the DPF model, the variation of atomic density field was allowed normal to the GB plane. At the GB plane, the in-plane GB density $\rho^{GB}$ was treated as a constant average value, representing its intrinsic dependence on the GB nature and misorientation. Although this assumption provides a useful simplification in studying GB phenomena, it does have the drawback of overlooking the significance of the in-plane structure variation. This seems to be particularly central in the view of experimental observations that confirm relatively stable grain boundary composition fluctuation \cite{darvishikamachali2020segregation}. In this thesis, the significance and impact of the atomic structure of GBs on their thermodynamics is investigated. This is achieved in two ways: On one hand, by extending the CALPHAD-integrated density-based free energy functional to account for structural degrees of freedom of GBs, and on the other hand, by deducing and linking density-related GB properties to the GB structure through the results of atomistic simulation of the GBs. Naturally, the structure (atomic density) within the GB plane fluctuates. This variation may also be linked to changes in composition due to solute segregation at the GB. While the fact that the GB structure can undergo transitions (referred to as complexions) \cite{frolov2015segregation, cantwell2020grain, cantwell2014grain} is not entirely new, the quantitative measurements of co-existing GB phases are scarce. Recently, instances were reported where the coexistence of two in-plane GB phases was revealed through the application of high-resolution transmission electron microscopy and atomistic simulation \cite{frommeyer2022dual, meiners2020observations}. To this end, the potential of GB structural variation within the DPF model is introduced in this thesis, where the GB in-plane density $\rho^{GB}$ is described as a field, that can vary both in time and space. This extension enables the in-plane GB density $\rho^{GB}$ to evolve and exhibit two distinct low-energy states, denoted as $\rho^{GB} = \rho_1$ and $\rho^{GB} = \rho_2$, where $\rho_2 > \rho_1$. Separating these two structural states is an in-plane line defect. This way, the model allows the studies of the co-evolution between the chemical and structural states of the GB. As a proof of concept and benchmark study, the extended-DPF model is implemented for studying Fe-Mn system. The results show that the GB structure's capacity to respond to chemical variations, as incorporated in the DPF model, enhances the Mn segregation transition at the GB, even in the absence of any alterations to the GB structure. When the GB structure undergo changes (or is non-uniform), the model reveals a coupling between the GB structure and chemical evolution. The ability of the GB structure to change allows the coexistence of spinodally formed low- and high-Mn phases within the GB during segregation transition. The acquired equilibrium segregation isotherms provides insight into the range of alloy compositions where these GB phases remain stabilised. Moreover, the observations indicate that the tendency of the GB to undergo a structural transition (change) is associated with the energy of the in-plane line defect, between low- and high-density domains within the GB plane. The extended-DPF model is further applied to Zn-coated advanced high strength steels (Fe-Zn systems), where Zn segregation to the GB is known to cause severe performance degradation due to liquid metal embrittlement \cite{razmpoosh2021pathway, ikeda2022early, bhattacharya2018liquid}. The effect of GB type and its chemo-structural coupling on Zn segregation is investigated. The results showed a sharp Zn segregation that is strongly influenced by the nature of the GB itself, as well as the coupling between its chemistry and structure. Additionally, GB phase diagrams were constructed across a wide range of alloy compositions and temperatures. The impact of the GB type and chemo-structural coupling on the miscibility gap of GBs is discussed. The DPF model's ability to incorporate atomic-scale characteristics into the construction of Gibbs free energies at the mesoscale ensures it retains key physical insights when predicting microstructure properties. To this end, a robust investigation of the model’s parameters and outputs in comparison to atomistic simulations of GBs is presented. This not only serves as a gauge for the models reliability, but also provide a new framework in establishing an atomistically-informed density-based description of GBs. First, by examining a large dataset of GBs in BCC-Fe and -Mo from atomistic simulations, a connection between their discrete atomic structure and the continuous atomic density function $\rho$ is established. This is achieved by a systematic coarse-graining approach wherein an atomsitically-obtained density function (delta function) is substituted with a normalised Gaussian function, so that, a smooth and continuous atomic density profile in real space can be obtained, where the minimum is the average atomic density at the GB plane $\rho^{GB}$. The investigation revealed a linear proportional relationship between the GB excess free volume and $\rho^{GB}$. This correlation simplifies the computation of the excess free volume as the integration over the portion of the density profile where the atomic density is less than one. Furthermore, the GB energies calculated by atomistic simulations revealed a correlation with $\rho^{GB}$ for certain classification of GB types, therefore enhancing the model's predictive accuracy. Concurrently, the atomic-scale characteristics of GBs can be further harnessed in the DPF models by replacing the simple functional form of the potential energy as given in the original DPF model formulation with a material specific interatomic potential (expressed as a function of the atomic density $\rho$) from molecular dynamic simulations. This way, a reliable prediction of the atomic density gradient energy coefficient for mesoscale simulations can be obtained. KW - Grain boundary structure KW - Grain boundary chemistry KW - Density-based phase-field modelling KW - Grain boundary thermodynamics KW - Grain boundary segregation transition PY - 2025 SP - 1 EP - 134 CY - Aachen AN - OPUS4-64455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Semantic Technologies in Action: Integrating Mechanical and Microstructure Data in MSE N2 - Semantic technologies (ST) are a powerful tool for storing, processing, and querying data in a contextualized and interoperable manner. They enable machine-actionable and human-readable knowledge representations essential for advanced data management, retrieval, and reuse. As one of the key factors within the frame of the collaborative project platform MaterialDigital (PMD), the establishment of a virtual material data space and the semantic modeling of hierarchical, process-dependent material data is aimed at to serve as best-practice examples of knowledge representation through ontologies and knowledge graphs. In this presentation, the application of ST to a specific use case from the field of materials sciences and engineering (MSE) is demonstrated: the integration and analysis of data related to a 2000 series age-hardenable aluminum alloy. By semantically representing mechanical and microstructural data obtained from tensile tests and dark-field transmission electron microscopy across various aging times, an expandable knowledge graph was constructed that is aligned with the PMD Core Ontology (PMDco) and enriched through the Tensile Test (TTO) and Precipitate Geometry Ontologies. This semantically integrated dataset enables advanced analytical capabilities via SPARQL queries and reveals microstructure–property relationships consistent with the well-known Orowan mechanism. The approach highlights the potential of semantic data integration to support FAIR data principles and to foster a more data-centric and interoperable research infrastructure in MSE. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability PY - 2025 AN - OPUS4-63666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fotheringham, U. T1 - Digitalization of Glass Development N2 - Im Vortrag werden erste Ergebnisse aus dem vom BMFTR im Rahmen der MaterialDigital Initiative geförderten Projekt „GlasAgent“ vorgestellt, welches die Glasentwicklung mittels KI vorantreiben soll. In diesem Projekt werden mehrere Entwicklungszyklen inklusive des Recyclingprozesses durchlaufen und die Ergebnisse genutzt, um Datenbanken und Modelle zu verbessern. Mit diesen verknüpft und basierend auf der semantischen GlasDigital-Ontologie soll zukünftig ein Chatbot die Glasentwicklung schneller, präziser und nachhaltiger gestalten. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 26.11.2025 KW - Glass KW - Workflow KW - Automation KW - MAP KW - Ontology KW - Simulation KW - Database PY - 2025 AN - OPUS4-65039 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - IUC02: Framework for Curation & Distribution of Reference Datasets (On the example of Creep Data of Ni Based superalloys) N2 - A research data management framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials is presented. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial part of the concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. In this presentation a general workflow overview and the relevance of selected individual subworkflows is presented. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen PY - 2025 AN - OPUS4-64881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data of Creep of Ni Based Superalloys Exemplified for CMSX 6 N2 - Research data management (RDM) framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials. Documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial part of the concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. T2 - 2. SupERBO Symposium on Superalloys CY - Bochum, Germany DA - 27.02.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen PY - 2025 AN - OPUS4-64859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Platform MaterialDigital (PMD) - Knowledge Representation, Interoperability, Reliability N2 - Through collaboration in the materials science and engineering (MSE) community, the PMD is collectively developing common standards and prototype solutions for data acquisition, structuring, storage, and processing. This comprises the development of architectural, standardized and foundational ontologies and workflows. Demonstrators resulting from these developments provide good practice examples. The PMD Core Ontology (PMDco) was created as an anchor that allows implementation of semantic data integration. It provides a common and expanding vocabulary to represent and share knowledge while enabling efficient collaboration and promoting interoperability between diverse domains. T2 - Kupfer-Symposium 2025 CY - Schwäbisch-Gmünd, Germany DA - 12.11.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2025 AN - OPUS4-64708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Ratanaphan, Sutatch A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries I: Coarse-graining atomistic structures N2 - The longstanding gap between atomistic and mesoscale simulations partly lies in the absence of a direct, physically grounded connection between atomic structure and mesoscale fields. In this work, we present a robust coarse-graining approach to systematically investigate the connection between phase-field and atomistic simulations of grain boundaries (GBs). The atomistic structures of 408 GBs in BCC-Fe and -Mo were studies to compute and analyze a continuous atomic density field. We discover a fundamental relationship between the GB density---defined as the average atomic density at the GB plane---and the GB excess free volume, an integral property of the boundary. An almost perfect linear correlation between the GB atomic density and GB excess free volume is identified. We also show that the width of BCC GBs, when scaled by the lattice constant, approaches a universal constant value. The relationships among GB density, width, and energy are systematically examined for various GB planes, and the GB energy--density correlations are classified with respect to GB types. It turns out that the atomic planes forming the GB strongly influence both the GB density and excess volume. The current results establish a dependable framework to bridge across scales, enabling density-based phase-field modeling of GBs with atomistic fidelity and enhancing the predictive reliability of mesoscale simulations. KW - Density-based model KW - Grain boundary structure KW - Grain boundary thermodynamic KW - Atomistic simulations PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654872 DO - https://doi.org/10.1016/j.actamat.2025.121786 SN - 1359-6454 VL - 305 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-65487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries II: Incorporating atomistic potentials into free energy functional N2 - The density-based phase-field model for grain boundary (GB) thermodynamics and kinetics has offered a broad range of applications in alloy and microstructure design. Originally, this model is based on a potential energy terms that is connected to the cohesive energy of a given substance. A more rigorous approach, however, is a full consideration of an interatomic potential over the possible range of distance and therefore density. In Manuscript I of this series, we developed and thoroughly analyzed the coarse-graining of atomistic GB structures. In this work (Manuscript II), we complete the coupling between atomic and mesoscale modeling of GBs by incorporating the full interatomic potentials into the density-based free energy functional. Using GB energies calculated from atomistic simulations, the coarse-graining approach and the atomistic-integrated density-based Gibbs free energy, we effectively evaluate the density gradient energy coefficient. We found that coupling the density-based model with atomistic potentials reveal physically-sound trends in the GB equilibrium properties. A universal equation was derived to describe the potential energy contribution to the GB energy and the gradient energy coefficient for BCC-Fe and -Mo GBs, similar to the universal equation for GB excess free volume presented in Manuscript I. The proposed approach provides a mesoscale density-based model rooted in atomic-scale characteristics for reliable predictions of GB properties. KW - Density-based model KW - Phase-field KW - Grain boundary structure KW - Grain boundary thermodynamics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654904 DO - https://doi.org/10.1016/j.actamat.2025.121787 SN - 1359-6454 VL - 305 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-65490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Dufresne, E.M. A1 - Maaß, Robert T1 - Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass N2 - Subjecting metallic glasses repeatedly to liquid nitrogen temperature has become a popular method to homogeneously rejuvenate the material. Here we reveal the atomic-scale structural dynamics using in- situ x-ray photon correlation spectroscopy (XPCS) during and after cryogenic cycling of a Zr-based metallic glass in two structural states (plate and ribbon). Heterogeneous structural dynamics is observed at 300 K that changes to monotonic aging at 78 K. It is found that cryogenic cycling homogenizes the relaxation time distribution. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with longtime structural relaxation times irrespective of the structural state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. A structural picture emerges that points towards heterogeneities in the fictive temperature as a requirement for cryogenic energy storage. KW - Structural dynamics KW - Metallic glass KW - Relaxation KW - Rejuvenation KW - Cryogenic cycling PY - 2020 DO - https://doi.org/10.1016/j.actamat.2020.06.063 SN - 1359-6454 VL - 196 SP - 723 EP - 732 PB - Elsevier Ltd. AN - OPUS4-51311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Honrao, S. J. A1 - Rizzardi, Q. A1 - Maaß, Robert A1 - Trinkle, D. R. A1 - Hennig, R. G. T1 - Split-vacancy defect complexes of oxygen in hcp and fcc cobalt N2 - One of the most ubiquitous and important defects in solids is oxygen. Knowledge about the solubility and diffusivity of oxygen in materials is crucial to understand a number of important technological processes, such as oxidation, corrosion, and heterogeneous catalysis. Density-functional theory calculations of the thermodynamics and kinetics of oxygen in cobalt show that oxygen diffusing into the two close-packed phases, namely α (hcp) and β (fcc), strongly interacts with vacancies.We observe the formation of oxygen split-vacancy centers (V-Oi-V) in both phases, and we show that this defect complex exhibits a similar migration energy barrier to the vacancy and oxygen interstitials. In contrast to the vacancy and oxygen interstitials, the oxygen split-vacancy centers exhibit an anisotropic strain field that couples to applied stress, making it possible to observe them through an internal friction experiment on quenched cobalt. KW - Split-vacancy defect complexes PY - 2020 DO - https://doi.org/10.1103/PhysRevMaterials.4.103608 VL - 4 IS - 10 SP - 103608-1 EP - 103608-9 PB - American Physical Society AN - OPUS4-51582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Mancias, J. A1 - Gan, B. A1 - Maaß, Robert T1 - Evidence of room-temperature shear-deformation in a Cu-Al intermetallic N2 - Lamellar eutectics are known to evidence plastic shear in otherwise brittle intermetallics, if the lamella spacing is small enough. Here we pursue this idea of confined plasticity in intermetallics further and demonstrate room-temperature shear-deformation in a two-phase CuAl 2 -CuAl intermetallic nano- composite. The presence of a phase with a 3-fold symmetry is also revealed after deformation. Simula- tion of transmission electron microscopy images shows this to be monoclinic CuAl. These observations are made in the deformation zone underneath locations of nanoindents, of which the force-displacement curves exhibit an unusual response of continuously increasing pop-in sizes with load. KW - Nanoindentation KW - Intermetallic KW - Nano-composite KW - Shear bands KW - Plasticity PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.033 VL - 190 SP - 126 EP - 130 PB - Elsevier Ltd. AN - OPUS4-52455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Silicate glass fracture surface energy calculated from crystal structure and bond-energy data N2 - We present a novel method to predict the fracture surface energy, γ, of isochemically crystallizing silicate glasses using readily available crystallographic structure data of their crystalline counterpart and tabled diatomic chemical bond energies, D0. The method assumes that γ equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were in excellent agreement with those calculated from glass density, network connectivity and D0 data in earlier work. This finding demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. KW - Glass KW - Fracture surface energy KW - Toughness KW - Modeling KW - Mechanical properties PY - 2023 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122679 SN - 0022-3093 VL - 622 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-58767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Optimally rejuvenated model binary glasses N2 - Using the creation relaxation algorithm developed for the atomistic modeling of the high-dose irradiation limit of crystalline systems, we explore the limits of the structural rejuvenation of a highly excited model binary glass. This high-energy athermal amorphous structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, being characterized by a porous system-spanning network of minimally frustrated structural motifs. The observed homogeneous plasticity is mediated by the same string-like structural excitations, which mediate structural relaxation and microplasticity at finite temperature in more relaxed structures. This highly rejuvenated structural asymptote is not far from the structural state of regions, which have experienced athermal shear localization in more relaxed samples, suggesting an optimally rejuvenated glassy structure will always be limited by that produced by shear localization. KW - Metallic glasses KW - Creation-relaxation algorithm KW - Shear PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.125604 VL - 6 IS - 12 SP - 1 EP - 13 PB - American Physical Society AN - OPUS4-56741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kar, S. A1 - Ikeda, Yuki A1 - Lünser, K. A1 - Woodcock, Th. G. A1 - Nielsch, K. A1 - Reith, H. A1 - Maaß, Robert A1 - Fähler, S. T1 - Growth Twins and Premartensite Microstructure in Epitaxial Ni-Mn-Ga Films N2 - Magnetic shape memory alloys have been examined intensively due to their multifunctionality and multitude of physical phenomena. For both areas, epitaxial films are promising since the absence of grain boundaries is beneficial for applications in microsystems and they also allow to understand the influence of a reduced dimension on the physical effects. Despite many efforts on epitaxial films, two particular aspects remain open. First, it is not clear how to keep epitaxial growth up to high film thickness, which is required for most microsystems. Second, it is unknown how the microstructure of premartensite, a precursor state during the martensitic transformation, manifests in films and differs from that in bulk. Here, we focus on micrometer-thick austenitic Ni-Mn-Ga films and explain two distinct microstructural features by combining high-resolution electron microscopy and X-ray diffraction methods. First, we identify pyramid-shaped defects, which originate from {1 1 1} growth twinning and cause the breakdown of epitaxial growth. We show that a sufficiently thick Cr buffer layer prevents this breakdown and allows epitaxial growth up to a thickness of at least 4 μm. Second, premartensite exhibits a hierarchical microstructure in epitaxial films. The reduced dimension of films results in variant selection and regions with distinct premartensite variants, unlike its microstructure in bulk. KW - Alloy KW - Epitaxial films KW - Hierarchical microstructure Premartensite KW - Twinning KW - Magnetic shape memory PY - 2023 DO - https://doi.org/10.1016/j.actamat.2023.118902 SN - 1359-6454 VL - 252 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Ott, C. A1 - Pechimuthu, Dinesh A1 - Moosavi, Robabeh A1 - Stoica, M. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Shear-band cavitation determines the shape of the stress-strain curve of metallic glasses N2 - Metallic glasses are known to have a remarkably robust yield strength, admitting Weibull moduli as high as for crystalline engineering alloys. However, their postyielding behavior is strongly varying, with large scatter in both flow stress levels and strains at failure. Using x-ray tomography, we reveal how a strain-dependent internal evolution of shear-band cavities underlies this unpredictable postyielding response.We demonstrate how macroscopic strain softening coincides with the first detection of internal shear-band cavitation. Cavity growth during plastic flow is found to follow a power law, which yields a fractal dimension and a roughness exponent in excellent agreement with self-similar surface properties obtained after fracture. These findings demonstrate how internal microcracking coexists with shear-band plasticity along the plastic part of a stress-strain curve, rationalizing the large variability of plastic flow behavior seen for metallic glasses. KW - Shear-band cavitation KW - Metallic glasses PY - 2023 DO - https://doi.org/10.1103/PhysRevMaterials.7.023602 SN - 2475-9953 VL - 7 IS - 2 SP - 1 EP - 11 PB - American Physical Society AN - OPUS4-57042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco T1 - A new model for predicting fracture surface energies in oxide glasses - How cleavage planes help us understand the intrinsic fracture toughness of oxide glasses N2 - The search for strong and tough oxide glasses is important for making safer, more environmentally friendly, thinner glass products. However, this task remains generally difficult due to the material’s inherent brittleness. In search for tougher glasses, fracture toughness (KIC) prediction models are helpful tools to screen for promising candidates. In this work, a novel model to predict KIC via the fracture surface energy, γ, is presented. Our approach uses readily available crystallographic structure data of the glass’s isochemical crystal and tabled diatomic chemical bond energies, D0. The method assumes that γ of a glass equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were not only in excellent agreement with those calculated with a former well-working model, but also demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. Finally, the effectiveness of fracture toughness enhancement by chemical substitution is discussed based on our results and alternative toughening strategies will be suggested. T2 - Deparment Seminar Materials Engineering CY - Berlin, Germany DA - 15.06.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Fracture Mechanics KW - Silicate Glasses KW - Phase Separation PY - 2023 AN - OPUS4-58419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco T1 - Fracture surface energy of glasses obtained from crystalline structure and bond energy data N2 - The search for strong and tough oxide glasses is important for making safer, environment-friendlier, thinner glasses. As fracture toughness experiments in brittle materials are complicated and time-consuming , modelling glass fracture surface energy, G, and fracture toughness, KIc, is of interest for screening promising candidates. Inspired by Rouxel´s idea of preferred crack growth along cutting weakest bonds within a glass structure and a study by Tielemann et al. , which indicates a correlation between crystal fracture surface and glass-crys¬tal interfacial energies, we present a new approach for predicting G. Combining both ideas, we used diatomic bond energies and readily available crystallographic structure data for estimating G. The proposed method assumes that G of the glass equals the surface fracture energy of the cleavage plane in its respective isochemical crystal. We calculated G- values for more than 25 iso-chemical silicate systems and compared them to calculated values from Rouxel’s widely used procedure, which is well working and based on glass densities and chemical bond energies. Not only does our model yields good agreement with [3], but it also enables an estimation for glasses with unknown density and can therefore contribute to broaden the data basis for glass property modelling tools. Most interestingly, however, this agreement indicates an interesting similarity between cleavage planes in a crystal and its corresponding glass state in terms of fracture processes. T2 - DGG-USTV Joint annual meeting 2023 CY - Orleans, France DA - 22.05.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy KW - Silicate Glasses PY - 2023 AN - OPUS4-58416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis A1 - Hammerschmidt, T. A1 - Stotzka, R. T1 - Demonstration of the Infrastructure Use Case 02: Framework for curation and distribution of reference datasets N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Metadata schema KW - Syngle Crystal alloy PY - 2023 AN - OPUS4-57924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Riechers, Birte A1 - Maaß, Robert T1 - nanoindentation data associated with the publication "On the elastic microstructure of bulk metallic glasses" in Materials&Design 2023 N2 - This dataset consists of indentation data measured with a conospherical tip in a Hysitron-Bruker TI980 Nanoindenter on the surface of a <100> Silicon wafer and a polished cross-sectional cut of a Zr65Cu25Al10 bulk metallic glass. It is associated with the following publication: Birte Riechers, Catherine Ott, Saurabh Mohan Das, Christian H. Liebscher, Konrad Samwer, Peter M. Derlet and Robert Maass "On the elastic microstructure of bulk metallic glasses" Materials and Design xxx, (2023) 111929. https://doi.org/10.1016/j.matdes.2023.111929 All experimental information can be found in this paper and in the accompanying supplementary information. This electronic version of the data was published on the "Zenodo Data repository" found at http://zenodo.org/deposit in the community "Bundesanstalt fuer Materialforschung und -pruefung (BAM)". The authors have copyright to these data. You are welcome to use the data for further analysis, but are requested to cite the original publication whenever use is made of the data in publications, presentations, etc. Any questions regarding the data can be addressed to birte.riechers@bam.de who would also appreciate a note if you find the data useful. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 DO - https://doi.org/10.5281/zenodo.7818224 PB - Zenodo CY - Geneva AN - OPUS4-57352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an unusual career path and unusual transport in metallic glasses N2 - Planning an academic career is a bit like enjoying a box of chocolate – you never know what you are going to get next. In this talk, I will begin with sharing how luck, difficult decisions, fate, and family constraints affected my career path across continents, universities, the private sector, and to becoming a director at a national laboratory. This journey was certainly not planned and highlights how opportunities and compromises together allow you to make much more out of your engineering degree than you ever have dreamed of. After this unusual journey as a materials scientist, I am transitioning to the technical part of my talk, where we will discuss transport in metallic glasses. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via physical aging. As a function of time, relaxation may indeed constitute significant threads to safe applications, such as a complete loss of toughness. In the search for a physical understanding of aging, we exploit here the ability to track atomic-scale dynamics with coherent x-ray scattering. Conducted across temperatures and under the application of stress, the results reveal unexpected transport. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of atomic-scale dynamics that underly physical aging of metallic glasses. We find that classical Kohlrausch-Williams-Watts behavior is only suited for the short relaxation-time regime, whereas anomalous diffusion emerges at practically relevant times. We discuss these results in terms of the structural relaxation modes and propose a picture of a true microstructure in metallic glasses. T2 - Department Seminar IIT Delhi 2023 CY - Delhi, India DA - 15.12.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Ott, C. A1 - Das, S. M. A1 - Liebscher, C. A1 - Samwer, K. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - On the elastic microstructure of bulk metallic glasses N2 - Metallic glasses (MGs) are known to be structurally heterogeneous at the nanometer (nm) scale. In addition, elastic property mapping has indicated the presence of at least an order-of-magnitude larger length scales, of which the origin continues to remain unknown. Here we demonstrate the existence of an elastic decorrelation length of the order of 100 nm in a Zr-based bulk MG using spatially resolved elastic property mapping via nanoindentation. Since compositional modulations sufficiently large to account for this elastic microstructure were not resolved by analytical scanning-transmission electron microscopy, chemical phase separation such as spinodal decomposition cannot explain their occurrence as previously suggested. Instead, we argue that the revealed long-range elastic modulations stem from structural variations affecting the local density. These emerge during solidification and are strongly influenced by the cooling constraints imposed on bulk MGs during the casting process. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573504 DO - https://doi.org/10.1016/j.matdes.2023.111929 SN - 0264-1275 VL - 229 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wallis, Theophilus A1 - Ikeda, Yuki A1 - Saikia, U. A1 - Ahmadian, A. A1 - Liebscher, C. A1 - Hickel, Tilmann A1 - Maaß, Robert T1 - Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system N2 - A giant Zn segregation transition is revealed using CALPHAD-integrated density-based modeling of segregation into Fe grain boundaries (GBs). The results show that above a threshold of only a few atomic percent Zn in the alloy, a substantial amount of up to 60 at.% Zn can segregate to the GB. We found that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy required for triggering the segregation transition decreases. Direct evidence of the Zn segregation transition is obtained using high-resolution scanning transmission electron microscopy. Base on the model, we trace the origin of the segregation transition back to the low cohesive energy of Zn and a miscibility gap in Fe-Zn GB, arising from the magnetic ordering effect, which is confirmed by ab-initio calculations. We also show that the massive Zn segregation resulting from the segregation transition greatly assists with liquid wetting and reduces the work of separation along the GB. The current predictions suggest that control over Zn segregation, by both alloy design and optimizing the galvanization and welding processes, may offer preventive strategies against liquid metal embrittlement. KW - CALPHAD KW - Microstructure Design KW - Grain boundary engineering KW - Steels KW - Density-based Model KW - Segregation Engineering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584292 DO - https://doi.org/10.1016/j.scriptamat.2023.115758 SN - 1359-6462 SN - 1872-8456 VL - 238 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-58429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kar, Satyakam A1 - Ikeda, Yuki A1 - Nielsch, Kornelius A1 - Reith, Heiko A1 - Maaß, Robert A1 - Fähler, Sebastian T1 - Multiferroic Microstructure Created from Invariant Line Constraint N2 - Ferroic materials enable a multitude of emerging applications, and optimum functional properties are achieved when ferromagnetic and ferroelectric properties are coupled to a first‐order ferroelastic transition. In bulk materials, this first‐order transition involves an invariant habit plane, connecting coexisting phases: austenite and martensite. Theory predicts that this plane should converge to a line in thin films, but experimental evidence is missing. Here, the martensitic and magnetic microstructure of a freestanding epitaxial magnetic shape memory film is analyzed. It is shown that the martensite microstructure is determined by an invariant line constraint using lattice parameters of both phases as the only input. This line constraint explains most of the observable features, which differ fundamentally from bulk and constrained films. Furthermore, this finite‐size effect creates a remarkable checkerboard magnetic domain pattern through multiferroic coupling. The findings highlight the decisive role of finite‐size effects in multiferroics. KW - Epitaxial films KW - Finite-size effects KW - Multiferroics KW - Martensite KW - Magnetic shape memory alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637910 DO - https://doi.org/10.1002/adfm.202416638 SN - 1616-301X VL - 35 IS - 10 SP - 1 EP - 11 PB - Wiley AN - OPUS4-63791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert A1 - Derlet, P. T1 - Micro-plasticity in a fragile model binary glass N2 - Atomistic deformation simulations in the nominally elastic regime are performed for a model binary glass with strain rates as low as 10 4 /s (corresponding to 0.01 shear strain per 1 μs). A strain rate dependent elastic softening due to a micro-plasticity is observed, which is mediated by thermally-activated localized structural transformations (LSEs). A closer inspection of the atomic-scale structure indicates the material response is distinctly different for two types of local atomic environments. A system spanning iscosahe- drally coordinated substructure responds purely elastically, whereas the remaining substructure admits both elastic and microplastic evolution. This leads to a heterogeneous internal stress distribution which, upon unloading, results in negative creep and complete residual-strain recovery. A detailed structural analysis in terms of local stress, atomic displacement, and SU(2) local bonding topology shows such mi- croscopic processes can result in large changes in local stress and are more likely to occur in geomet- rically frustrated regions characterized by higher free volume and softer elastic stiffness. The thermally- activated LSE activity also mediates structural relaxation, and in this way should be distinguished from stress-driven shear transformation activity which only rejuvenates glass structure. The frequency of LSE activity, and therefore the amount of micro-plasticity, is found to be related to the degree to which the glassy state is relaxed. These insights shed atomistic light onto the structural origins that may govern re- cent experimental observations of significant structural evolution in response to elastic loading protocols. KW - Molecular dynamics KW - Bulk metallic glasses KW - Plasticity KW - Residual strains PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523782 DO - https://doi.org/10.1016/j.actamat.2021.116771 VL - 209 SP - 116771 PB - Elsevier Ltd. AN - OPUS4-52378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - Beyond Serrated Flow in Bulk Metallic Glasses: What Comes Next? N2 - This manuscript is based on an oral contribution to the TMS 2020 annual meeting and is dedicated to Prof. Peter Liaw, who for decades has shown great interest in serrated plastic flow. Here we will focus on the case of bulk metallic glasses, and begin with briefly summarizing some aspects of serrated and non-serrated inhomogeneous flow—a phenomenon that has perplexed materials scientists for decades. Four directions of research are identified that emerged out of the desire to fundamentally understand the intermittent inhomogeneous flow response. These research directions gear away from the phenomenological stress–strain behavior but put the underlying shear defect into focus. Unsolved problems and future research topics are discussed. KW - Non-serrated inhomogeneous flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513106 DO - https://doi.org/10.1007/s11661-020-05985-w SN - 1073-5623 SP - 1 EP - 11 PB - Springer Nature AN - OPUS4-51310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Density-based phase field modelling of the interplay between grain boundary segregation transition and structure N2 - Grain boundary (GB) chemical and structural variations can significantly influence materials performance. The former is generally ascribed to the structural gradient between the grain and GB. While GB segregation may be accompanied by chemical and structural variations, clear insights about the GB’s thermodynamic phase behaviour upon coupling between its chemistry and structure is lacking. Using the CALPHAD integrated density-based phase field model, we study the co-evolution of GB’s structure and segregation in Fe-Mn alloys. We found that the GB segregation transition is amplified if its structure can respond to chemical variation. Additionally, the coupling between GB structural and segregation evolution was found to enable co-existence of the spinodally formed low- and high-Mn phases within the GB. In the light of atomistic simulations, we expand on investigating the correlation between the parameters that characterise the GB density map with GB properties. T2 - TMS 2023 CY - San Diego, California, USA DA - 19.03.2023 KW - Grain boundary engineering KW - Density-based phase-field modelling KW - Microstructure design PY - 2023 AN - OPUS4-57970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data in Materials Science and Engineering Exemplified for Creep Data of a Single-Crystalline Ni-Based Superalloy N2 - Here we present our research data management (RDM) framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial aspect of our concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. T2 - MaRDA2025 Virtual Annual Meeting CY - Online meeting DA - 18.02.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen KW - Datenschema PY - 2025 AN - OPUS4-64858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Shakeel, Y. A1 - Gedsun, A. A1 - Forti, M. A1 - Hunke, S. A1 - Han, Ying A1 - Hammerschmidt, T. A1 - Aversa, R. A1 - Olbricht, Jürgen A1 - Chmielowski, M. A1 - Stotzka, R. A1 - Bitzek, E. A1 - Hickel, Tilmann A1 - Skrotzki, Birgit T1 - Management of reference data in materials science and engineering exemplified for creep data of a single-crystalline Ni-based superalloy N2 - The identification of process-structure-property relationships of materials inevitably requires the combination of research data from different measurements. Therefore, the concepts related to FAIR (findable, accessible, interoperable, reusable) data handling, increasingly reported in literature, are particularly important in the materials science and engineering domain. However, they have not yet been integrated into a single, overarching methodological framework, particularly for reference data. Here, we introduce such a framework. Our concept covers data generation, documentation, handling, storage, sharing, data search and discovery, retrieval, and usage. Furthermore, we prototypically implement it using a real dataset with creep data of a single-crystal CMSX-6 Ni-based superalloy. The presented implementation is traceable and permanently accessible through open repositories. The individual elements considered in the framework ensure the functionality and usability of the data and, thus, the adherence to the FAIR principles. In conjunction with this, we present a definition for reference data of materials. Our definition underlines particularly the importance of a comprehensive documentation, e.g., on material provenance, data processing procedures, and the software and hardware used, including software-specific input parameters, as these details enable data users or independent parties to assess the quality of the datasets and to reuse and reproduce the results. Reference data that is managed according to the proposed framework can be used to advance knowledge in the materials science and engineering domain, e.g., by identifying new process-structure-property relations. KW - Referenzdaten KW - NFDI-MatWerk KW - Data schema KW - Research Data Management KW - Reference Data PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625047 DO - https://doi.org/10.1016/j.actamat.2025.120735 VL - 286 SP - 1 EP - 15 PB - Elsevier Inc. AN - OPUS4-62504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, Erika A1 - Fareed, Adnan A1 - Manzoni, Anna Maria A1 - Paulisch-Rinke, Melanie C. A1 - Hsu, Wei-Che A1 - Yeh, An-Chou A1 - Murakami, Hideyuki A1 - Vogel, Florian A1 - Maaß, Robert T1 - Pinning-dominated strengthening in high-entropy superalloys N2 - Hierarchical microstructural design of high-entropy superalloys offers novel strengthening pathways beyond classical superalloys. Here we assess the strength of isolated γ’ precipitates with and without an additional internal γ nanophase. The results show that nano-precipitation within the γ’ phase leads to a marked statistical reduction of the dislocation-nucleation limited yield strength. In concert with disorder-driven chemical weakening of the γ’ phase, these findings indicate that bulk strengthening due to hierarchical microstructural design in high entropy superalloys must primarily be pinning dominated. KW - High-entropy alloys KW - Superalloys KW - Dislocation nucleation KW - Plasticity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637590 DO - https://doi.org/10.1016/j.scriptamat.2025.116874 SN - 1359-6462 VL - 268 SP - 1 EP - 6 PB - Elsevier Inc. AN - OPUS4-63759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Han, Seungchang A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - On the preference of liquid-metal embrittlement along high-angle grain-boundaries in galvanized steels N2 - Focusing on the early stages of liquid-metal embrittlement (LME) of Zinc (Zn) coated advanced high-strength steels, we show that the Zn infiltration path prior to grain-boundary decohesion and therefore cracking distinctly follows high-angle grain boundaries (HAGBs). This selective transport prior to LME-induced microcracking rationalizes the experimentally observed post-mortem cracking along martensitic HAGBs. We discuss the selective Zn transport and GB-weakening in terms of an misorientation-angle dependent atomic density and diffusivity, and its effect on GB-segregation. KW - Liquid-metal embrittlement KW - Advanced high-strength steels KW - Grain boundaries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631103 DO - https://doi.org/10.1016/j.scriptamat.2025.116723 SN - 1359-6462 VL - 265 SP - 1 EP - 5 PB - Elsevier Inc. AN - OPUS4-63110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin T1 - Fully Automated 3D Printing of Ceramics for Remote and Decentralized Manufacturing N2 - Manufacturing high-performance ceramic components in remote or decentralized environments – such as in the field, on maritime missions or on isolated offshore platforms – requires solutions that are reliable, low-maintenance, and easy to operate. We present a novel end-to-end manufacturing system designed to produce dense, functional, and geometrically complex ceramic parts using Fused Filament Fabrication (FFF) with minimal human intervention. Our system enables the automated production of yttria-stabilized zirconia (YSZ) components by integrating printing, debinding, and sintering into one streamlined process and thus eliminating the need for multiple specialized machines. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed allows for mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. YSZ components are printed onto sacrificial polylactide (PLA) rafts, which serve as a temporary foundation. Once printing is finished, a furnace unit is seamlessly lowered, enclosing the green parts for debinding, and sintering. During firing the PLA raft is disintegrated, enabling unconstrained sintering and easy final part removal. In conclusion, our integrated solution enables localized, on demand fabrication of geometrically complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - Ceramic AM Summit 2025 CY - Berlin, Germany DA - 30.06.2025 KW - Fused Filament Fabrication KW - Ceramics KW - Metalls KW - Process automation PY - 2025 AN - OPUS4-63623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -