TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 DO - https://doi.org/10.1016/j.crme.2018.08.001 VL - 346 IS - 11 SP - 1018 EP - 1032 PB - Elsevier Masson SAS AN - OPUS4-46512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim T1 - Mechanische Werkstoffeigenschaften bei hoher Temperatur N2 - Der Vortrag behandelt die Herausforderungen bei der mechanischen Kennwertermittlung für Metalle bei hoher Temperatur. T2 - Festkolloquium 50 Jahre Institut für Werkstoffe CY - Bochum, Germany DA - 13.09.2018 KW - Kennwertermittlung KW - Mechanisches Verhalten KW - Hochtemperatur PY - 2018 AN - OPUS4-46014 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lebensdauerbewertung von alternden Werkstoffen N2 - Werkstoffe im Hochtemperatureinsatz verändern mit der Zeit ihre Mikrostruktur. Mit diesem Alterungsprozess einher geht eine Veränderung der mechanischen Eigenschaften ebenso wie eine Veränderung des Schädigungsverhaltens. Im Rahmen des FVV Vorhabens „Alterung und Lebensdauer“ haben das Fraunhofer IWM in Freiburg und die BAM in Berlin die weit verbreitete warmfeste Aluminiumlegierung EN AW-2618A in verschiedenen Alterungszuständen experimentell charakterisiert und darauf aufbauend Modelle für die Lebensdauerbewertung mit der Finite-Elemente- Methode implementiert. KW - Aluminiumlegierung KW - Alterung KW - Mikrostruktur KW - Lebensdauervorhersage KW - Schädigung PY - 2018 DO - https://doi.org/10.1007/s35146-018-0085-8 SN - 0024-8525 SN - 2192-8843 VL - 79 IS - 10 SP - 72 EP - 76 PB - Springer AN - OPUS4-46064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 DO - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - A phase-field approach to fracture coupled with mass transport for the simulation of environmentally-assisted damage N2 - With the introduction of a mass transport mechanism the entire problem is subjected to a time frame that dictates the time-dependent action of soluted species on mechanical properties. A numerical framework within the phase-field approach is presented with an embrittlement-based coupling mechanism. The underlying functionals are expressed in terms of the displacement, mass concentration and crack phase-field. Within the phase-field approach the modelling of sharp crack discontinuities is replaced by a diffusive crack model facilitating crack initiation and complex crack topologies without the requirement of a predefined crack path. The isotropic hardening of the elasto-plastic deformation model and the local fracture criterion are affected by the species concentration. This allows for embrittlement and leads to an accelerated crack propagation. An extended mass transport equation for hydrogen embrittlement, accounting for mechanical stresses and deformations, is implemented. For stabilisation purposes a staggered scheme is applied to solve the system of partial differential equations by a multi-field finite-element method. A thermodynamically consistent coupling relation that accommodates the required mechanisms is presented. KW - Environmentally assisted cracking KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport PY - 2018 DO - https://doi.org/10.1002/pamm.201710088 VL - 17 SP - 237 EP - 238 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Mosquera Feijoo, Maria A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Saliwan Neumann, Romeo A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Kranzmann, Axel A1 - Skrotzki, Birgit T1 - Performance of 9-12%Cr steels under cyclic loading and cyclic oxidation conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods (creep-fatigue interaction). Oxidation testing focuses on the grades P92 and VM12 with the intention of clarifying the impact of frequent passes through intermediate temperature levels on the kinetics of steam-side oxidation and the characteristics of the evolving oxide scales. An attempt is made to evaluate their composition, strength, integrity and adhesion after up to 250 temperature cycles. Flat coupons as well as curved tube sections are tested to assess the mutual influence of geometry on oxide scale integrity. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification and substrate/oxide interface characterisation. The evolutions of grain size and dislocation density under different test conditions are quantified. T2 - International Conference on Power Plant Operation & Flexibility CY - London, UK DA - 04.07.2018 KW - Ferritic-martensitic steels KW - Low cycle fatigue KW - Thermo-mechanical fatigue KW - Cyclic oxidation PY - 2018 AN - OPUS4-47115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading and creep-fatigue performance of P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification, substrate/oxide interface characterization and quantification of the microstructure evolution under cyclic conditions. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Fatigue KW - Creep-fatigue PY - 2018 AN - OPUS4-47116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Crack identification by data fusion in fatigued flat specimens with through-holes - A feasibility study N2 - A numerical pre-study has shown that cracks in a flat sample featuring a drilled hole can be classified into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Fatigue 2018 CY - Poitiers, France DA - 27.05.2018 KW - LCF KW - Crack KW - Data Fusion PY - 2018 AN - OPUS4-45936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uckert, Danilo A1 - Kühn, Hans-Joachim A1 - Matzak, Kathrin A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhaltens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zusammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Dusseldorf, Germany DA - 30.11.2018 KW - Kriechen KW - LCF KW - Lebensdauer KW - Ni-Resist KW - Schädigung KW - TMF PY - 2018 SN - 978-3-00-061694-5 SP - 29 EP - 38 CY - Düsseldorf AN - OPUS4-46919 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Schmitz, Sebastian ED - Moninger, G. T1 - Risserkennung an Bohrlochproben: Numerische Voruntersuchung für eine neuartige Methode zur Rissformerkennung T1 - Crack Detection on Borehole Specimens: Numerical pre-examination for a novel crack shape detection method N2 - Es konnte anhand einer numerischen Voruntersuchung gezeigt werden, dass anhand der kombinierten Auswertung der im Versuch verwendeten Sensorik eine Einteilung der unter Ermüdung in Bohrlochproben auftretenden Rissformen in verschiedene Hauptkategorien (Eckriss, Oberflächenriss, Durchgangsriss) möglich ist. N2 - When fatigued specimens with a hole are to be investigated regarding crack growth, it may be the case that the shape of the crack can’t be identified with sufficient certainty. If marking the fracture surface e.g. using beach marks is not possible, a method is required that nevertheless allows for the determination of the crack shape in order to calculate the corresponding fracture mechanics parameters. This paper describes a numerical pre-study for a method that allows for the classification of cracks in a sample featuring a drill hole into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - Crack KW - LCF KW - Data Fusion KW - Risse KW - Rissform KW - Datenfusion PY - 2018 VL - 2018 SP - 249 EP - 254 AN - OPUS4-46976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Häusler, I. A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza T1 - Age hardening of a high purity Al‐4Cu‐1Li‐0.25Mn alloy: Microstructural investigation and phase‐field simulation N2 - Research results considering the "Age Hardening of a High Purity Al‐4Cu‐1Li‐0.25Mn Alloy: Microstructural Investigation and Phase‐Field Simulation" were presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Age hardening KW - Aluminium KW - Phase-field simulation KW - Precipitates KW - Transmission electron microscopy PY - 2018 AN - OPUS4-45286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Rockenhäuser, Christian A1 - Saxena, A. A1 - Skrotzki, Birgit A1 - Umer Bilal, M. A1 - Ramirez, Daniela Valencia A1 - Schwarze, C. A1 - Häusler, I. T1 - Chemo-mechanical Coupling Effect During Precipitation in AlLi and AlLiCu systems N2 - The chemo-mechanical coupling effect during precipitation in AlLi and AlLiCu systems is presented and effects of chemo-mechanical coupling on materials with different microstructures is discussed. The results of the simulations are then compared to electron-microscopical investigations. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 17.12.2018 KW - Al-Li alloys KW - Phase field simulation KW - Precipitation KW - Inverse ostwald ripening KW - Transmission electron microscopy PY - 2018 AN - OPUS4-46961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - A Fourier transformation-based method for gradient-enhanced modeling of fatigue N2 - A key limitation of the most constitutive models that reproduce a Degradation of quasi-brittle materials is that they generally do not address issues related to fatigue. One reason is the huge computational costs to resolve each load cycle on the structural level. The goal of this paper is the development of a temporal Integration scheme, which significantly increases the computational efficiency of the finite element method in comparison to conventional temporal integrations. The essential constituent of the fatigue model is an implicit gradient-enhanced formulation of the damage rate. The evolution of the field variables is computed as amultiscale Fourier series in time.On a microchronological scale attributed to single cycles, the initial boundary value problem is approximated by linear BVPs with respect to the Fourier coefficients. Using the adaptive cycle jump concept, the obtained damage rates are transferred to a coarsermacrochronological scale associated with the duration of material deterioration. The performance of the developedmethod is hence improved due to an efficient numerical treatment of the microchronological problem in combination with the cycle jump technique on the macrochronological scale. Validation examples demonstrate the convergence of the obtained solutions to the reference simulations while significantly reducing the computational costs. KW - Accelerated temporal integration KW - Fourier series KW - Gradient-enhanced fatigue model PY - 2018 DO - https://doi.org/10.1002/nme.5740 SN - 1097-0207 SN - 0029-5981 VL - 114 IS - 2 SP - 196 EP - 214 PB - Wiley AN - OPUS4-44008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Unger, Jörg F. ED - Meschke, G. ED - Pichler, B. ED - Rots, J.G. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor importance. Because of the growing interest in maxing out the capacities of concrete, its fatigue failure under compression has become an issue. A variety of interacting phenomena such as e.g. loss of prestress, degradation due to chemical reactions or creep and shrinkage influence the fatigue resistance. Failure due to cyclic loads is generally not instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable numerical model to predict the performance of concrete over its lifetime is required, which accurately captures order effects and full three-dimensional stress states. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. However, a key limitation of those models is that they generally do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. This is due to the computational effort necessary to explicitly resolve every cycle which exceeds the currently available computational resources. The limitation can only be overcome by the application of multiscale methods in time. The objective of the paper is the development of numerical methods for the simulation of concrete under fatigue loading using temporal multiscale methods. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses [1]. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from static tests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach [2]. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. Finally, the developed methods will be validated and compared to experimental data. [1] Vitaliy Kindrachuk, Marc Thiele, Jörg F. Unger. Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression, International Journal of Fatigue, 78:81-94, 2015 [2] Vitaliy Kindrachuk, Jörg F. Unger. A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration, International Journal of Fatigue, 100:215-228, 2017 T2 - Conference on Computational Modelling of concrete and concrete structures (EURO_C 2018') CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Fatigue KW - Concrete KW - Damage PY - 2018 SN - 978-1-138-74117-1 DO - https://doi.org/10.1201/9781315182964-19 SP - 155 EP - 164 PB - CRC Press, Taylor & Francis Group CY - Boca Raton, Lodon, New York, Leiden AN - OPUS4-47999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Unger, Jörg F. T1 - A novel computational method for efficient evaluation of structural fatigue N2 - The methods of computational damage mechanics are well-established for the description of degradation of materials under monotone loading. An extension to structural damage induced by cyclic loading is however significantly limited. This is due to enormous computational costs required to resolve each load cycle by conventional temporal incremental integration schemes while a typical fatigue loading history comprises between thousands and millions of cycles. Despite the permanent increase of computational resources and algorithmic performance, a successful approach is rather based on the development of novel multiscale in time integration schemes. A Fourier transformation-based temporal integration (FTTI) is represented, which takes advantage of temporal scale separation incorporated into the cycle jump method. The response fields are approximated by a Fourier series whose coefficients undergo the evolution on a long-time scale. This is correlated with the evolution of the history variables, including damage, by means of the adaptive cycle jump method of various orders. The necessary extrapolation rates are obtained from the underlying solution of a short-time scale problem, which results from the oscillatory boundary condition and fulfills the global equilibrium of the Fourier coefficients. In this way, a remarkable speedup is achieved because the number of cycles to be fully integrated dramatically decreases. The key idea behind the FTTI method is that the global in space equilibrium problem is linear since it is decoupled from the evolution equations. The latter are solved in the quadrature points under response fields prescribed throughout the whole load cycle. Consequently, integration of a single load cycle is much more efficient than the conventional single scale integration where the global equilibrium iteration and the local iteration of the evolution equations are coupled. This results in an additional speedup of the FTTI method. The performance of the FTTI technique is demonstrated for two different constitutive behaviors: a viscoplastic model with a damage variable governed by the local equivalent viscoplastic strain; a quasi-brittle response where the damage variable is driven by a non-local equivalent strain. The latter is implicitly introduced as proposed by Peerlings. Both, the explicit and implicit extrapolation schemes are validated. The FTTI solutions agree very well with the reference cycle-by -cycle solutions, while significantly reducing the computational costs. The adaptive determination of the jump length can properly recognize the particular responses throughout the fatigue loading history (stationary fatigue, acceleration of fatigue damage when approaching failure) as well as stress redistribution phenomena. T2 - International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue Congress Congress Congress 2018 CY - Poitiers, France DA - 27.05.2018 KW - Fatigue KW - Accelerated integration scheme PY - 2018 AN - OPUS4-46975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor importance. Because of the growing interest in maxing out the capacities of concrete, its fatigue failure under compression has become an issue. A variety of interacting phenomena such as e.g. loss of prestress, degradation due to chemical reactions or creep and shrinkage influence the fatigue resistance. Failure due to cyclic loads is generally not instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable numerical model to predict the performance of concrete over its lifetime is required, which accurately captures order effects and full three-dimensional stress states. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. However, a key limitation of those models is that they generally do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. This is due to the computational effort necessary to explicitly resolve every cycle which exceeds the currently available computational resources. The limitation can only be overcome by the application of multiscale methods in time. The objective of the paper is the development of numerical methods for the simulation of concrete under fatigue loading using temporal multiscale methods. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from static tests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. Finally, the developed methods will be validated and compared to experimental data. T2 - Conference on Computational Modelling of concrete and concrete structures (EURO_C 2018') CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Fatigue KW - Concrete KW - Damage PY - 2018 AN - OPUS4-48001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy ED - Titscher, Thomas ED - Hirthammer, Volker ED - Unger, Jörg F. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - A continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from statictests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. A multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. T2 - Euro-C, March 1st 2018 CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Continnum damage model KW - Simulation of concrete KW - Under cyclic loading PY - 2018 UR - https://euro-c.tuwien.ac.at/home/ SN - 978-1-315-18296-4 SN - 978-1-138-74117-1 VL - 2018 SP - 155 EP - 164 PB - CRC Press, Taylor & Francis Group CY - Leiden, The Netherland AN - OPUS4-48400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Unger, Jörg F. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - A continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from statictests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. A multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. T2 - Computational Modelling of concrete and concrete Structures Euro-C, March 1st 2018 CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Continnum damage model KW - Simulation of concrete KW - Under cyclic loading PY - 2018 UR - https://euro-c.tuwien.ac.at/home/ AN - OPUS4-48399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Kühn, Hans-Joachim A1 - Matzak, Kathrin A1 - Rehmer, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhal-tens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zu-sammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - 41. Vortragsveranstaltung Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Dusseldorf, Germany DA - 30.11.2018 KW - Ni-Resist KW - LCF KW - TMF KW - Kriechen KW - Lebensdauer KW - Schädigung PY - 2018 AN - OPUS4-46851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Schmitz, Sebastian T1 - Risserkennung an Bohrlochproben N2 - Es wird eine neu entwickelte Methode zur Thermographiebasierten Rissmessung vorgestellt. Darüber hinaus wird eine numerische Vorarbeit präsentiert, die zeigt, dass anhand der gemeisamen Auswertung der Versuchsdaten aus unterschiedlicher Sensorik die Möglichkeit besteht, die unter Ermüdungsbelastung in Bohrlochproben auftretenden Risse in Geometriekategorien zu unterteilen. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - LCF KW - Crack KW - Data Fusion KW - Thermographie PY - 2018 AN - OPUS4-46977 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456591 DO - https://doi.org/10.1007/s11661-018-4726-9 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457878 DO - https://doi.org/10.3390/ma11091518 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grun, Benthe Birger A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen ED - Christ, Hans-Jürgen T1 - Charakterisierung von Hochtemperaturwerkstoffen durch Zug- und Ermüdungsversuche an Kleinproben T1 - Characterization of high-temperature materials by tensile and fatigue tests on small specimens N2 - Die Verwendung von miniaturisierten Probengeometrien in der mechanischen Prüfung ermöglicht die Entnahme des Probenmaterials direkt aus kritischen Bereichen wie Fügeverbindungen und ermöglicht die Prüfung von kleinen Bauteilen wie additiv gefertigten Strukturen. In der vorliegenden Arbeit werden exemplarisch die Ergebnisse von vergleichenden Zug- und niederzyklischen Schwing-versuchen (LCF) an dem austenitischen Stahl AISI 316L und der Nickelbasislegierung IN718 vorgestellt. Die Prüfergebnisse der Kleinproben aus AISI 316L weisen die charakteristischen Eigenschaften des Werkstoffs auf, und die Analyse der Zug- und Ermüdungsdaten führt zu Werten, die den Literaturdaten weitgehend entsprechen. Der direkte Vergleich mit Standardprobendaten zeigt jedoch systematische Abweichungen bei Zugfestigkeit, Dehngrenze und Gleichmaßdehnung, die in diesem Beitrag diskutiert werden. N2 - The use of miniaturized specimen geometries in mechanical testing allows to extract speci-men material directly from critical areas such as weldments and to test small structures such as additively manufactured components. In the present paper, example results of comparative tensile and low-cyclic fatigue tests (LCF) on the austenitic steel AISI 316L and the nickel-based alloy IN718 are presented. The test results of the small specimens on AISI 316L show the characteristic properties of the material, and the analysis of the tensile and fatigue tests leads to values which largely correspond to literature data. However, the direct comparison with standard sample data shows systematic deviations in tensile strength, yield strength and uniform elongation, which are discussed in this paper. T2 - Werkstoffprüfung 2019 CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Kleinprobenprüfung KW - Probengrößeneffekt KW - Low Cycle Fatigue KW - Zugversuch KW - AISI 316L KW - IN 718 PY - 2019 SP - 329 EP - 334 AN - OPUS4-50220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grun, Benthe Birger A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Avila, Luis A1 - Charmi, Amir T1 - Charakterisierung von Hochtemperaturwerkstoffen durch Zug- und Ermüdungsversuche an Kleinproben N2 - Die Verwendung von miniaturisierten Probengeometrien in der mechanischen Prüfung ermöglicht die Entnahme des Probenmaterials direkt aus kritischen Bereichen wie Fügeverbindungen und ermöglicht die Prüfung von kleinen Bauteilen wie additiv gefertigten Strukturen. In der vorliegenden Arbeit werden exemplarisch die Ergebnisse von vergleichenden Zug- und niederzyklischen Schwingversuchen (LCF) an dem austenitischen Stahl AISI 316L und der Nickelbasislegierung IN718 vorgestellt. Die Prüfergebnisse der Kleinproben aus AISI 316L weisen die charakteristischen Eigenschaften des Werkstoffs auf, und die Analyse der Zug- und Ermüdungsdaten führt zu Werten, die den Literaturdaten weitgehend entsprechen. Der direkte Vergleich mit Standardprobendaten zeigt jedoch systematische Abweichungen bei Zugfestigkeit, Dehngrenze und Gleichmaßdehnung, die in diesem Beitrag diskutiert werden. T2 - Werkstoffprüfung 2019 CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Kleinprobenprüfung KW - Probengrößeneffekt KW - Low Cycle Fatigue KW - Zugversuch KW - AISI 316L KW - IN 718 PY - 2019 AN - OPUS4-50221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Ávila, Luis A1 - Sommer, Konstantin T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Czichos, Horst ED - Hennecke, Manfred ED - Skrotzki, Birgit T1 - Materialprüfung N2 - Die Materialprüfung dient der Analyse der Eigenschaften, der Qualität und der Sicherheit vonMaterialien undWerkstoffen. Die häufigsten Verfahren umfassen die Analyse der chemischen Zusammensetzung und der Mikrostruktur sowie die Ermittlung von Werkstoffkennwerten. Dazu zählt auch die Bestimmung des Materialverhaltens unter verschiedenen Beanspruchungen bis hin zu komplexen Beanspruchungen. Die Verwendung von Referenzmaterialien, Referenzorganismen und Referenzverfahren dient der Zuverlässigkeit und Richtigkeit von Messungen, Prüfungen und Analysen. KW - Materialprüfung KW - Werkstoffprüfung KW - Chemische Analyse KW - Mikrostrukturuntersuchung KW - Gefügeuntersuchung KW - Werkstoffmechanische Prüfung KW - Zerstörungsfreie Prüfung KW - Referenzmaterial KW - Referenzorganismus KW - Referenzverfahren PY - 2019 SN - 978-3-662-57492-8 DO - https://doi.org/10.1007/978-3-662-57492-8_30-1 SP - 1 EP - 27 PB - Springer-Verlag GmbH CY - Berlin, Heidelberg ET - 35 AN - OPUS4-50516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Piesker, Benjamin A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of prestraining on the aging response of an Al-Cu-Li alloy N2 - The influence of prestraining on the aging response of an Al-Cu-Li alloy is investigated by preparation of different strain states (3 %, 4 %, 6 %) of the initial aging state. The Brinell hardness of the subsequently aged samples (up to 60 h aging time) was measured and it was found that the increasing dislocation concentration in the 3 different initial states leads to faster hardness increases and slightly higher maximum hardness. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Al-Cu-Li alloys KW - hardness KW - coarsening PY - 2019 SP - 186 EP - 187 PB - Deutsche Gesellschaft für Elektronenmikroskopie (DGE) CY - Dresden AN - OPUS4-48918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of precipitation coarsening in alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Aluminium KW - Digital material representation KW - Transmission electron microscopy KW - Material degradation PY - 2019 SP - 183 EP - 184 AN - OPUS4-48885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, I. A1 - Piesker, B. A1 - Skrotzki, Birgit T1 - Influence of prestraining on the aging response of an Al-Cu-Li alloy N2 - The influence of prestraining on the aging response of an Al-Cu-Li alloy is investigated by preparation of different strain states (3 %, 4 %, 6 %) of the initial aging state. The Brinell hardness of the subsequently aged samples (up to 60 h aging time) was measured and it was found that the increasing dislocation concentration in the 3 different initial states leads to faster hardness increases and slightly higher maximum hardness. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Al-Cu-Li alloys KW - Degradation KW - Hardness PY - 2019 AN - OPUS4-48953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian T1 - Obtaining, validating, and storing material parameters N2 - Several aspects of obtaining, validating, and storing material parameters are presented and discussed pertaining especially to calibration, inter-laboratory testing and statistical validation. T2 - 2019 Summer School Priotrity Program 1713 "Chemomechanics" CY - Ebernburg, Germamy DA - 06.05.2019 KW - Materials science KW - Calibration KW - Data storage PY - 2019 AN - OPUS4-48012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Charmi, Amir A1 - Epishin, A. T1 - Simulation of pore shrinkage with crystal plasticity and dislocation transport N2 - Single crystal superalloys usually contain pores of sizes 5-10 micro-m after casting and heat treatment. These pores can be reduced under compression by combined creep and diffusion in a subsequent treatment called Hot Isostatic Pressing (HIP). The paper presents a methodology to simulate pore shrinkage under HIP conditions in two dimensions (2D). At the scale of the pores, which is also the scale of the sub-grains (<50 micro-m) the dislocation sources cannot be assumed to be homogeneously distributed. Thus, the applicability of classical crystal plasticity is questionable. In this case, the transport of dislocations under an applied stress from the location where they are nucleated must be explicitly modelled. This is done by solving the transport equations for the dislocation densities and the elasticity equations in 2D. The dislocations are assumed to be nucleated at Low Angle Boundaries. They glide or climb through the sub-grains with a stress dependent velocity. The transport equations are solved by the Flux-Corrected Transport method, which belongs to the predictor-corrector class of algorithms. In the first step, an artificial diffusion is introduced, which suppresses spurious oscillations of the solution. In a second step, the solution is corrected in such a way that no additional extremes appear and that the extremes do not grow. The algorithm is validated by simulating the transport of simple distributions with a constant velocity field. With the dislocation velocities and the computed dislocation densities, the inelastic shear rate at the slip system level is computed by integrating the Orowan equation. In the 2D-setting, three slip systems are considered. The contributions of these slip systems are summed up to obtain the total inelastic strain rate. Dislocation glide and climb and the coupling of climb with vacancies diffusion are considered. The resolution of the equilibrium equations from the inelastic strains turned out to be prone to numerical instabilities. As an alternative, the stresses are directly computed from the distribution of geometrically necessary dislocations following the method presented in. The resulting boundary value problem is solved by the Least-Square Finite Element method. Examples of simulations are presented for a representative region under creep tension and for a pore shrinking under external pressure. T2 - International Conference on Material Modelling, ICMM 6 CY - Lund, Sweden DA - 26.06.2019 KW - Superalloy KW - Pores KW - Creep KW - Dislocations PY - 2019 AN - OPUS4-48488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ernst, A. A1 - Klein, S. A1 - Hall, T. A1 - Avila, Luis A1 - Bähre, D. T1 - Electrochemical dressing of hard tools for abrasive precision machining N2 - In this study an approach for dressing metallic bonded honing stones with hard cutting grains on the basis of electrolysis is investigated. By a combination of concepts from electrochemical machining (ECM) and electropolishing a test rig was designed and put into operation. In general, it can be stated that the Approach investigated in this paper has proved to be a suitable dressing method for honing stones. However, the dressing result is highly dependent on bond components, cutting grain size and concentration which lead to local differences in the material removal and irregular topographies. This could be overcome, for example, by setting the dressing parameters more precisely based on the best results presented in this paper. T2 - International Symposium on ElectroChemical Machining Technology CY - Saarbrücken, Germany DA - 14.11.2019 KW - Irregular topography KW - Honing KW - Electrochemical dressing KW - Honing Stone KW - Laser Scanning Microscopy KW - Electropolishing PY - 2019 SN - 978-3-00-064086-5 SP - 96 EP - 108 PB - Fertigungstechnik Saarbrücken CY - Saarbrücken AN - OPUS4-49490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Assessment of EN AW-2618A for high temperature applications considering aging effects N2 - The alloy EN AW-2618A was assessed regarding its properties for high temperature applications considering aging effects. T2 - BAM TMF-Workshop 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron microscopy (DFTEM) PY - 2019 AN - OPUS4-49808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Grützner, Stefan A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy A1 - Vöse, Markus T1 - Möglichkeiten und Grenzen der rechnerischen Bewertung der Lebensdauer von Bauteilen unter TMF: Viskoplastische Modelle N2 - In diesem Vortrag wird auf einige noch offene Frage zur Anwendung der viskoplastischen Modellierung bei Hochtemperaturermüdung. Insbesondere auf das Problem der Parameterbestimmung wird eingegangen. T2 - Workshop "Konstitutive Viskoplastische Materialmodelle" CY - Institut für Werkstoffkunde (IfW), Technische Universität Darmstadt, Germany DA - 06.11.2019 KW - TMF KW - Viskoplastisch KW - Modell KW - Hochtemperaturermüdung KW - LCF PY - 2019 AN - OPUS4-49611 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - Modelling of environmentally assisted material degradation in the crack phase-field framework N2 - The simulation of crack propagation was conducted with a diffusive crack model in a variational framework. Moreover, the physically sound introduction of mass transport and coupling mechanisms due to environmentally assisted effects could be realised in this framework. The objective consists of the application of the phase-field Approach towards the simulation of environmentally assisted material degradation with the advantage of a non-required predefined crack path and a mesh-independent non-local formulation that facilitates the damage evolution with respect to material softening. The sharp crack is regularised by the introduction of a phase-field order parameter leading to a diffusive crack formulation. Besides the equations originating from the linear momentum balance an additional evolution equation for the crack phase-field is introduced. Furthermore, mass transport is simulated by a Diffusion equation. The description delivered by the variational phase-field framework is able to simulate crack propagation according to published numerical test cases. Additionally, the calculation of stress intensity factors is possible as well as crack resistance curves that describe stable crack propagation. KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport KW - Environmentally assisted cracking PY - 2019 DO - https://doi.org/10.1177/1464420718761220 SN - 1464-4207 VL - 233 IS - 1 SP - 5 EP - 12 PB - SAGE AN - OPUS4-47152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel N2 - Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains. KW - Ferritic–martensitic steel KW - P92 KW - Low cycle fatigue KW - Relaxation fatigue KW - Cyclic softening PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473905 DO - https://doi.org/10.3390/met9010099 VL - 9 IS - 1 SP - 99, 1 EP - 25 PB - MDPI AN - OPUS4-47390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Hornbogen, E. A1 - Warlimont, H. A1 - Skrotzki, Birgit T1 - Metalle N2 - Dieses Standardwerk bietet eine Darstellung der Struktur und Eigenschaften der Metalle und ihrer Anwendungen als Werkstoffe. Im ersten, wissenschaftlichen Teil werden der atomare und mikroskopische Aufbau, die thermodynamischen und die grundlegenden physikalischen und mechanischen Eigenschaften der Metalle beschrieben sowie die Grundlagen der thermisch aktivierten Reaktionen und der Phasenumwandlungen. Die wichtigsten experimentellen Untersuchungsmethoden werden erläutert, wobei die mikroskopischen und Beugungsverfahren einen Schwerpunkt bilden. Im zweiten, technischen Teil werden die Werkstoffgruppen der Metalle und ihre anwendungsbezogenen Eigenschaften behandelt. Dabei wird auf die zugrunde liegenden Legierungen und die Verfahren zur gezielten Einstellung ihrer Eigenschaften eingegangen. Schwerpunkte bei der Darstellung der Werkstoffe sind die Stähle, die teilchengehärteten Legierungen, die Magnetwerkstoffe und die pulvermetallurgisch hergestellten Werkstoffe. Außerdem werden die Oberflächeneigenschaften und die Verfahren zur Oberflächenbehandlung dargestellt. KW - Struktur KW - Eigenschaften KW - Anwendungen PY - 2019 SN - 978-3-662-57762-2 DO - https://doi.org/10.1007/978-3-662-57763-9 SP - 1 EP - 424 PB - Springer Vieweg CY - Berlin ET - 7. AN - OPUS4-47549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Ávila, Luis T1 - Microstructure ageing of stainless steel AISI 316L manufactured by selective laser melting (SLM) N2 - Additive manufacturing (AM) processes, such as SLM, offer a variety of advantages compared to conventional manufacturing. Today AM parts are still comparatively less cost-effective if they are manufactured in large quantities. To make the AM parts more cost-efficient, the AM process has to be improved. It requires a good understanding of microstructure formation, microstructure-property-relations and ageing processes affected by different loads. In this work the ageing behavior of SLM manufactured AISI 316L stainless steel is evaluated. The microstructure effected by mechanical, thermal and corrosive loads are investigated and compared to as-built microstructure. Tensile tests are used for mechanical ageing. For thermal and corrosive loads the typical application conditions of 316L apply. The methods of microstructure investigation include SEM, TEM, CT and EBSD. The main object of this work is the description of microstructure and ageing processes of AM parts. T2 - European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM) 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - 316L KW - Selective laser melting KW - Microstructure evolution PY - 2019 AN - OPUS4-49886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -