TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel T1 - Thin Sol-Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C JF - Oxidation of Metals N2 - Samples of sol-gel alumina coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h. As result of this treatment a 50 µm thick bi-layered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40 µm thick inner oxidation zone was detected. In contrast, the porous, micron thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometers at the interface between steel substrate and coating. In this case high temperature corrosion of the steel was prevented so far. KW - Steel KW - Oxide coatings KW - High-temperature corrosion KW - TEM KW - SEM PY - 2018 DO - https://doi.org/10.1007/s11085-017-9799-0 SN - 0030-770X SN - 1573-4889 VL - 89 IS - 3-4 SP - 453 EP - 470 PB - Springer AN - OPUS4-44472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Sojref, Regine A1 - Kranzmann, Axel T1 - Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating JF - Materials and Corrosion N2 - Technically relevant P92 steel (9% Cr) was coated with a micron-thick porous alumina layer prepared by sol-gel technique and treated with flue gas (60 CO2-30 H2O-2 O2-1 SO2-7 N2 (mole fraction in %)) at 650 ° to mimic an oxyfuelcombustion process. Local defects in the coating were marked using focused ion beam (FIB) technique and were inspected after exposition to hot flue gas atmosphere at 300, 800, and 1300 h, respectively. Local defects like agglomerated alumina sol particles tend to spall off from the coating uncovering the underlying dense chromia scale. Re-coating was found to restore the protection ability from oxidation when repeatedly treated with hot flue gas. Cracks and voids did not promote the local oxidation due to the formation of crystalline Mn/S/O species within and on top of the coating. The protective character of the steel-coating system is a result of (i) the fast formation of a dense chromia scale at the surface of sol-gel alumina-coated P92 steel bars in combination with (ii) the porous alumina coating acting as diffusion barrier, but also as diffusion partner in addition with (iii) fast Mn outward diffusion capturing the S species from flue gas. KW - Alumina coatings KW - Oxyfuel KW - Steel P92 KW - High temperature corrosion PY - 2018 DO - https://doi.org/10.1002/maco.201709712 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 69 IS - 4 SP - 492 EP - 502 PB - Wiley-VCH Verlag GmbH&Co. KGaA CY - Weinheim AN - OPUS4-45300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Nofz, Marianne A1 - Bäßler, Ralph A1 - Sojref, Regine A1 - Le, Quynh Hoa T1 - Preliminary Study on Al2O3 Sol-Gel Coating for Corrosion Protection of Martensitic Stainless Steel in Artificial Geothermal Water T2 - Proceedings Annual AMPP International Corrosion Conference 2021 N2 - Al2O3 coatings are often used as protective layers on steels against electrochemical and high-temperature corrosion because they are chemically inert and stable at elevated temperatures. This study presents preliminary work on the possibilities of using Al2O3 sol-gel coatings for corrosion protection of martensitic stainless steels in geothermal environments. Al2O3 sol-gel coatings were applied on UNS S42000, which is known to be susceptible to uniform and localized corrosion. The coated steel specimens were then tested in two types of artificial geothermal water, which simulate the geothermal fluids found in Sibayak (SBY), Indonesia, and North German Basin (NGB), Germany, respectively. SBY has pH 4 and 1.5 g/L of chloride ions, whereas NGB has a pH of 6 and 166 g/L of chloride ions. All experiments were carried out in autoclaves at 150 °C and 1 MPa under the deaerated condition. Evaluations were performed by investigating the surface profiles of both uncoated and coated steels before and after the corrosion test using a Laser Scanning Microscope (LSM) and Scanning Electron Microscope (SEM). Finally, Electrochemical Impedance Spectroscopy (EIS) was performed to compare the corrosion resistance of Al2O3 coated steels in SBY and NGB solutions. It was observed from the corrosion test that Al2O3 coatings are more suitable for use in the geothermal water with a higher pH. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Protective coating KW - Sol-gel coating KW - Geothermal KW - Martensitic steel KW - Corrosion PY - 2021 SP - 16777-01 EP - 16777-12 CY - Houston AN - OPUS4-52501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Saliwan Neumann, Romeo T1 - Microstructure of bare and sol-gel alumina-coated nickel-base alloy Inconel 625 after long-term oxidation at 900 °C JF - Oxidation of Metals N2 - Though Ni-base superalloys show a high oxidation and corrosion resistance, coatings could still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 minutes. To evaluate the coating, the oxidation behavior of bare and alumina coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopic studies of sample surfaces and cross-sections showed that (i) in the 3.5 µm – 6.3 mm thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (ii) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (iii) the only 1.8 µm thick sol-gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (i) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (ii) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (iii) no detectable Cr-depleted zone at the alloy surface, and (iv) a narrower zone of formation of Kirkendall pores. KW - Inconel 625 KW - High-temperature oxidation KW - Oxidation protection KW - Sol-gel coating PY - 2019 DO - https://doi.org/10.1007/s11085-019-09888-z SN - 0030-770X VL - 91 IS - 3-4 SP - 395 EP - 416 PB - Springer Science+Business Media AN - OPUS4-47665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Agudo Jácome, Leonardo A1 - Pauli, Jutta A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Silver in low-melting alkali zinc borate glasses N2 - Ein aktuelles Forschungsziel ist die Substitution von Bleioxid in niedrig schmelzenden Gläsern z.B. zur Anwendung in Silber-Metallisationspasten. Im Fokus steht hier die Untersuchung der Silberdiffusion in Alkali-Zink-Boratgläsern (X2O-ZnO-B2O3, X = Li, Na, K, Rb). Zudem wird der Redoxzustand des Silbers (Ag) und somit die Art der diffundierenden Silberspezies bestimmt. Hierzu wurde eine metallische Silberschicht mittels Sputterns auf Glaswürfel aufgebracht. Die Wärmebehandlung erfolgte nahe der Glasübergangstemperatur bei 470 °C über 2 h unter Luft und Stickstoffatmosphäre. Die Schichtdicke der Silberbeschichtung betrug 1.8 µm nach der Wärmebehandlung, gemessen mittels Weißlicht-Interferometer. Die Silberdiffusionsprofile wurden mittels Sekundär-Neutral-Teilchen-Massenspektrometrie gemessen. Die Diffusionskoeffizienten des Silbers liegen in der Größenordnung von ~10-14 cm2/s und unterscheiden sich nur gering in Abhängigkeit des Alkali-Ions im Glas. Mittels Fluoreszenz-Spektroskopie ließen sich gelöste Ag+-Ionen und [Agm]n+-Cluster nach der Wärmebehandlung unterscheiden. Zusätzlich konnten ausgeschiedene metallische Silber-Partikel im Natrium-enthaltenden Glas mittels Transmissionselektronenmikroskopie beobachtet werden. Diese haben einen mittleren Durchmesser von ~6 nm. N2 - Substitution of lead oxide in low-melting glasses, e.g., for application in silver metallization pastes, is a current research goal. This work is focused on the investigation of silver diffusion in alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb). In addition, the redox state of silver (Ag) and thus the type of diffusing silver species were studied. For this purpose, a metallic silver coating was applied on glass cubes by means of sputtering. Heat treatment of the samples was performed close to the glass transition temperatures at 470 °C for 2 h under air and nitrogen atmosphere. Coating thickness was 1.8 µm after heat treatment, measured by a white light interferometer. Silver diffusion profiles were measured by means of secondary neutral mass spectrometry. The silver diffusion coefficients are in the range of ~10-14 cm2/s and indicate no significant differences depending on the type of alkali ions in the glass. Dissolved Ag+-ions and [Agm]n+-clusters in the glasses were differentiated using fluorescence spectroscopy. Precipitated metallic silver particles in the sodium containing glass were observed by means of transmission electron microcopy. Their mean particle diameter was ~6 nm. T2 - Living Glass Surfaces XI - Year of Glass CY - Ilmenau, Germany DA - 14.09.2022 KW - Alkali zinc borate glasses KW - Silver diffusion KW - Transmission electron microscopy KW - Fluorescence spectroscopy KW - Silver cluster PY - 2022 AN - OPUS4-55736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions JF - Polymer Testing N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite JF - physica status solidi (a) N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nawaz, Q. A1 - Blaeß, Carsten A1 - Mueller, Ralf A1 - Boccaccini, A.R. T1 - Processing and cytocompatibility of Cu-doped and undoped fluoride-containing bioactive glasses JF - Open Ceramics N2 - Sintered or additive-manufactured bioactive glass (BG) scaffolds are highly interesting for bone replacement applications. However, crystallization often limits the high-temperature processability of bioactive glasses (BGs). Thus, the BG composition must combine high bioactivity and processability. In this study, three BGs with nominal molar (%) compositions 54.6SiO2-1.7P2O3-22.1CaO-6.0Na2O-7.9K2O-7.7MgO (13–93), 44.8SiO2-2.5P2O3-36.5CaO-6.6Na2O-6.6K2O-3.0CaF2 (F3) and 44.8SiO2-2.5P2O3-35.5CaO-6.6Na2O-6.6K2O-3.0CaF2-1.0CuO (F3–Cu) were investigated. The dissolution and ion release kinetics were investigated on milled glass powder and crystallized particles (500–600 μm). All glasses showed the precipitation of hydroxyapatite (HAp) crystals after 7 days of immersion in simulated body fluid. No significant differences in ion release from glass and crystalline samples were detected. The influence of surface roughness on cytocompatibility and growth of preosteoblast cells (MC3T3-E1) was investigated on sintered and polished BG pellets. Results showed that sintered BG pellets were cytocompatible, and cells were seen to be well attached and spread on the surface after 5 days of incubation. The results showed an inverse relation of cell viability with the surface roughness of pellets, and cells were seen to attach and spread along the direction of scratches. KW - Bioactive glass KW - Crystallization KW - Solubility KW - Cytocompatibility KW - Surface roughness PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598257 DO - https://doi.org/10.1016/j.oceram.2024.100586 SN - 2666-5395 VL - 18 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-59825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction T2 - Rheologische Messungen an Baustoffen 2018 N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Undesired Foaming of Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by un-expected gas bubble formation also named foaming. Against this background, in this presentation the main aspects and possible reasons of foaming are shown for completely different glass powders: a barium silicate glass powders used as SOFC sealants, and bioactive glass powders using different powder milling procedures. Sintering and foaming were measured by means of heating microscopy backed up by XRD, differential thermal analysis (DTA), vacuum hot extraction (VHE), optical and electron microscopy, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Different densification was reached followed by significant foaming starting partly immediately, partly at higher temperature. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the milling atmosphere significantly affects the foaming of uniaxially pressed powder compacts sintered in air. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750 °C, which hints on a thermally very stable species or mechanical trapping or encapsulating of CO2. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. T2 - Seminário de Laboratório de Materiais Vítreos (LaMaV) de Departamento de Engenharia de Materiais (DEMa), Universidade Federal São Carlos UFSCar) CY - Saint Charles, Brazil DA - 06.06.2024 KW - Bioactive KW - Foaming KW - Glass KW - Crystallization KW - Viscose sintering PY - 2024 AN - OPUS4-60245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galleani, Gustavo A1 - Lodi, Thiago A. A1 - Conner, Robin L. A1 - Jacobsohn, Luiz G. A1 - de Camargo, Andrea S.S. T1 - Photoluminescence and X-ray induced scintillation in Gd3+-Tb3+ co-doped fluoride-phosphate glasses, and derived glass-ceramics containing NaGdF4 nanocrystals JF - Optical Materials: X N2 - The glass system (50NaPO3–20BaF2–10CaF2–20GdF3)-xTbCl3 with x = 0.3, 1, 3, 5, and 10 wt % was investigated. We successfully produced transparent glass ceramic (GC) scintillators with x = 1 through a melt-quenching process followed by thermal treatment. The luminescence and crystallization characteristics of these materials were thoroughly examined using various analytical methods. The nanocrystallization of Tb3+-doped Na5Gd9F32 within the doped fluoride-phosphate glasses resulted in enhanced photoluminescence (PL) and radioluminescence (RL) of the Tb3+ ions. The GC exhibited an internal PL quantum yield of 33 % and the integrated RL intensity across the UV-visible range was 36 % of that reported for the commercial BGO powder scintillator. This research showcases that Tb-doped fluoridephosphate GCs containing nanocrystalline Na5Gd9F32 have the potential to serve as efficient scintillators while having lower melting temperature compared to traditional silicate and germanate glasses. KW - Glass scintillator KW - Fluoride phosphate glasses KW - Gd3+ KW - Tb3+ PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603588 DO - https://doi.org/10.1016/j.omx.2023.100288 VL - 21 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, A. S. S. T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution JF - Scientific Reports N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles JF - Nano Letters N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Arendt, F. A1 - Sierka, M. A1 - Diegeler, A. T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.05.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses for scintillation N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is desirable to develop glass compositions based on a fundamental understanding of the glass structure and to establish structure-property relation models. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The local vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to good extent, based on structural information given by magnetic resonance techniques (NMR and EPR), associated to Raman and photophysical characterization. For the past 5 years, while still employed at the University of São Paulo, in Brazil, one of the interests of my research group has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides better mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10 - 30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by fluorine, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages. That is, the network structures are dominated by Ga-O-P or In-O-P linkages, as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity of the vibronic band in Eu3+-doped glasses and marked increase in excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+, yielding intense emissions in the blue and green, respectively, compatible to the spectral region of the highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the NMR and EPR techniques can be to provide decisive structural information, and to present the research perspectives in my new role as the Head of Division 5.6 – Glass at BAM. T2 - Fachausschusses I „Physik und Chemie des Glases“, DGG CY - Jena, Germany DA - 02.11.2023 KW - Structure-property correlation KW - Fluoride phosphate glasses KW - Scintillators KW - High energy radiation PY - 2024 AN - OPUS4-60360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galleani, Gustavo A1 - Lodi, Thiago A1 - Merízio, Leonnam A1 - de Jesus, Vinícius A1 - de Camargo, Andrea T1 - Scintillators, persistent luminescent and white light emitters: Progresses on UV and X-ray converting glasses and composites N2 - Recently, detection and conversion of high energy radiation such as ultraviolet and X-rays has gained renewed attention. In part, technological applications in radioimaging and tomography have developed considerably as to allow lower dosages and higher resolutions, which require optimized scintillators and dosimeters. On the other hand, the increasing effort to reduce carbon footprint in energy production has triggered an intensive search for materials that can be excited with sunlight, ranging from photocatalysts to solar concentrators. At LEMAF – Laboratory of Spectroscopy of Functional Materials at IFSC/USP, we have been developing bulk glasses, polycrystalline and composite materials designed to target both challenges and, in this work an overview of recent progresses and of the state of art of these materials will be given. For instance, the few available comercial scintillators are crystalline materials with costly and time consuming growth which hinders the development of new compositions. Glasses and glass ceramics, such as the NaPGaW composition developed in our lab, present high density, very good optical properties and high chemical stability which allow them radioluminescent response when doped with low concentrations of Ce3+, Eu3+ and Tb3+ offering a promise as alternatives to crystal scintillators. On the other hand, phosphor in glass (PiG) composites based on the persistent luminescent polycrystalline material Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) embedded into NaPGa glasses offer interesting perspectives for the of UV light into visible, useful for white light generation (lighting), improved harvesting and conversion of solar light when coupled to c-Si PV cells and photocatalysis. These and other examples will be discussed. The glasses are prepared through the conventional melt quenching technique, followed by controlled heating when glass ceramics are desired. The persistent luminescent phosphor is prepared by the microwave assisted technique (MAS) much faster and with considerable energy consumption reduction than in the usual solid state synthesis. The materials are characterized from the structural, morphological and spectroscopic (optical – UV-Vis, PL, PLE, and structural – NMR, EPR) points of view such that structure-property correlations are constantly sought to feedback synthesis and processing. Fig. 1, illustrates two examples of scintillator glasses doped with Tb3+ and PiG composites doped with Eu2+ and Dy3+. T2 - 11th International Conference on f Elements (ICFE-11) CY - Strasbourg, France DA - 22.08.2023 KW - Scintillators KW - Persistent luminescence KW - White light emitters PY - 2023 AN - OPUS4-60361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Optical properties of dental ceramics: Characterization via UV-Vis and photoluminescence spectroscopies N2 - When it comes to dental treatments, success is not only measured by attained functionality but, to a large extent, the associated aesthetics. This can become challenging for certain restorations and implants due to the complex optical characteristic of a tooth, which reflects, absorbs, diffuses, transmits, and even emits light. Thus, to get acceptable aesthetic results, favourable shade matching of ceramic restorations and implants should be achieved by strict control of optical response, which translates into a materials design question. Optical response is affected by several factors such as the composition, crystalline content, porosity, additives, grain size and the angle of incidence of light on the dental ceramics. The properties to be characterized are colour (and its stability), translucency, opalescence, refractive index, and fluorescence. Several techniques can be applied for the characterization of these properties and in this presentation, an overview will be given. Moreover, particular emphasis will be given on the capacitation of less familiarized public to UV-Vis absorption and photoluminescence (PLE) spectroscopies that are versatile and widely employed for functional and structural characterization of glasses and glass ceramic materials. T2 - 2nd BAYLAT Workshop of CERTEV - FAU CY - Nuremberg, Germany DA - 04.12.2023 KW - Optical properties KW - Dental ceramics KW - Optical spectroscopy PY - 2023 AN - OPUS4-60364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses sought by NMR, EPR & PL N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, expensive, and time consuming, it is desirable to gather fundamental understanding of structure and to develop structure-property relation models, which allow best and faster choices. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to some extent, based on structural information given by magnetic resonance (NMR and EPR) techniques associated to Raman and photophysical characterization. For the past 5 years, one of the interests of my research group at the University of São Paulo, in Brazil, has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides improved mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10-30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by F, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages i.e, the network structures are dominated by Ga-O-P or In-O-P linkages as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity in the vibronic band of Eu3+ and significant increase in the excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+ yielding intense emissions in the blue and green, respectively, compatible to the spectral region of highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the combination of NMR, EPR, Raman and PLE spectroscopies can be to provide structural information and to present the perspectives for their introduction in the research agenda of Division 5.6 – Glass, which I now lead, at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. T2 - GOMD 2024 - Glass and Optical Division Meeting, ACerS CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Glass Digital KW - Glasses KW - Robotic melting PY - 2024 AN - OPUS4-60357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Glass Digitalization: Contributions from BAM N2 - An overview of the Glass Digitalization efforts at BAM, within the framework of the Glass Digital consortium, was given. From the development of the robotic melting device to the ML capabilities, a description of the different stages of the developments and roles of project partner was presented. T2 - GlaCerHub Melting Day CY - Oponice, Slovakia DA - 12.06.2024 KW - Glass Digital KW - Robotic glass melting KW - Digitalization PY - 2024 AN - OPUS4-60365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - From guest scintillators to luminescent host-guest hybrid materials and nanoparticles: Contributions from LEMAF N2 - An overview of the research work conducted at LEMAF - the laboratory of spectroscopy of functional materials in IFSC/USP Brazil under my leadership, before I joined BAM was given. T2 - FunGlass Graduate Program School CY - Oponice, Slovakia DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Structure property correlations KW - Host-guest hybrid materials KW - Scintillators KW - Persistent luminescent KW - Phosphors KW - Composite materials PY - 2024 AN - OPUS4-60368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Optical properties of glasses and ceramics N2 - Optical glasses and glass ceramics are present in many devices often used in our daily routine, such as the mobile phones and tablets. Since the 1960´s with the development of glass lasers, and more recently, within the search for efficient W-LEDs, sensors and solar converters, this class of materials has experienced extreme research progress. In order to tailor a material for such applications, it is very important to understand and characterize optical properties such as refractive index, transmission window, absorption and emission cross sections, quantum yields, etc. These properties can often be tuned by appropriate compositional choice and post-synthesis processing. In this lecture we will discuss the optical properties of glasses and glass ceramics, relevant to that end. T2 - 2nd CeRTEV Glass School CY - São Carlos, SP, Brazil DA - 22.04.2024 KW - Optical properties of glasses and ceramics PY - 2024 AN - OPUS4-60370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Pan, Z.-W. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Ontology KW - Data Space KW - Workflow KW - Robotic melting PY - 2023 AN - OPUS4-60372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, P. A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - OntoCommons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Materials Data Space KW - PMD KW - Glass PY - 2023 AN - OPUS4-60371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Diegeler, A. A1 - Schottner, G. A1 - Niebergall, R. A1 - Kilo, M. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - GlassDigital: Digital Infrastructure for Data-Driven High-Throughput Glass Development N2 - Gläser zeichnen sich durch eine breite und kontinuierlich abstimmbare chemische Zusammensetzung sowie einzigartige Formgebungstechniken aus, was sie oft zur Schlüsselkomponente moderner Hochtechnologien macht. Die Glasentwicklung ist jedoch oft noch zu kosten-, zeit- und energieintensiv. Der Einsatz von robotergestützten Schmelzsystemen, eingebettet in eine Ontologie-basierte digitale Umgebung, soll diese Probleme in Zukunft überwinden. Im Rahmen der BMBF Forschungsinitiative MaterialDigital unternimmt das Verbundprojekt GlasDigital „Datengetriebener Workflow für die beschleunigte Entwicklung von Glas“ erste Schritte in diese Richtung. Das Projektkonsortium, an dem das Fraunhofer ISC in Würzburg, die Friedrich-Schiller-Universität Jena (OSIM), die Technische Universität Clausthal (INW) und die Bundesanstalt für Materialforschung und -prüfung (BAM, Fachgruppe Glas) beteiligt sind, will alle wesentlichen Basiskomponenten für eine beschleunigte datengetriebene Glasentwicklung zusammenführen. Zu diesem Zweck wird ein robotergestütztes Hochdurchsatz-Glasschmelzsystem mit neuartigen Inline-Sensoren zur Prozessüberwachung, auf maschinellem Lernen (ML) basierenden adaptiven Algorithmen zur Prozessüberwachung und -optimierung, neuartigen Werkzeugen für die Hochdurchsatz-Glasanalyse sowie ML-basierten Algorithmen zum Glasdesign, Data Mining sowie Eigenschafts- und Prozessmodellierung ausgestattet. Der Vortrag gibt einen Überblick darüber, wie all diese Komponenten miteinander verzahnt sind, und veranschaulicht ihre Nutzbarkeit anhand einiger Beispiele. T2 - HVG-Fortbildungskurs CY - Offenbach, Germany DA - 27.11.2023 KW - Glas KW - Ontology KW - Workflow KW - Simulation KW - Robotic melting PY - 2023 AN - OPUS4-60386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - de Camargo, Andréa A1 - Contreras, A. A1 - Niebergall, R. A1 - Schottner, G. A1 - Kilo, M. A1 - Diegeler, A. A1 - Kempf, S. A1 - Puppe, F. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. T1 - Digital infrastructure for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design. This includes software tools for data mining as well as property and process modelling. The presentation provides an overview of how all these tools merge into a digital infrastructure and illustrates their usability using examples. All infrastructural parts were developed by a consortium consisting of the Fraunhofer ISC in Würzburg, the Friedrich-Schiller-University Jena (OSIM), the Clausthal University of Technology (INW) and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) as part of a joint project of the German research initiative MaterialDigital. T2 - 97. Glass-Technology Conference CY - Aachen, Germany DA - 27.05.2024 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space KW - Digital Twin PY - 2024 AN - OPUS4-60387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Niebergall, R. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Puppe, F. A1 - Limbach, R. A1 - Pan, Z. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - lasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - HVG-DGG Fachausschuss I CY - Jena, Germany DA - 03.11.2023 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space PY - 2023 AN - OPUS4-60383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Spectroscopy Lectures N2 - As a guest professor of FUNGLASS, I delivered 3 lectures on spectroscopy to the Graduate School Program, the postdoctoral fellows and other researchers: 1) Introduction to spectroscopy applied to solid state materials (with focus on glass and glass ceramics); 2) Vibrational spectroscopy (Infrared and Raman); 3) Electron Paramagnetic Resonance T2 - FunGlass CY - Trencín, Slovakia DA - 03.06.2024 KW - Spectroscopy KW - Radiation-matter interaction KW - FT-IR KW - Raman KW - EPR PY - 2024 AN - OPUS4-60367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Gender equality in Sciences: Let´s teach our girls to be brave! N2 - A panorama of the global gender gap scenario in sciences, specially STEM, was given to illustrate the need for urgent actions (and suggestions of them) to correct biased treatment and promote females in their scientific careers. T2 - FunGlass School CY - Oponice, Slovakia DA - 10.06.2024 KW - Gender gap KW - Women in science KW - Female noble prize winners PY - 2024 AN - OPUS4-60366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Gender equality in sciences: Let´s teach our girls to be brave! N2 - A global panorama of the Gender Gap in Sciences was presented along with recommendations on how to remediate unequal treatment of females in Science, and to prepare future generations for gender equality. T2 - Lunch Talk - Women@DGM: Gender Mindsets/Bias in an International Context CY - Online meeting DA - 14.06.2024 KW - Gender gap PY - 2024 AN - OPUS4-60369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -