TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Piesker, Benjamin A1 - Ávila Calderón, Luis Alexander A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature JF - Advanced Engineering Materials N2 - This study investigates the room‐ and high‐temperature (650 °C) tensile and low‐cycle‐fatigue behavior of Inconel 718 produced by laser powder bed fusion (PBF‐LB/M) with a four‐step heat treatment and compares the results to the conventional wrought material. The microstructure after heat treatment is characterized on different length scales. Compared to the wrought variant, the elastic and yield properties are comparable at both test temperatures while tensile strength, ductility, and strain hardening capacity are lower. The fatigue life of the PBF‐LB/M variant at room temperature is slightly lower than that of the wrought material, while at 650 °C, it is vice versa. The cyclic stress response for both material variants is characterized by cyclic softening, which is more pronounced at the higher test temperature. High strain amplitudes (≥0.7%) at room temperature and especially a high testing temperature result in the formation of multiple secondary cracks at the transitions of regions comprising predominantly elongated grain morphology and columns of stacked grains with ripple patterns in the PBF‐LB/M material. This observation and pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients and local crystallite clusters. KW - Additive manufacturing KW - Fatigue damage KW - Heat treatment KW - Inconel 718 KW - Laser powder bed fusion KW - Low-cycle fatigue KW - Tensile strength PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599316 DO - https://doi.org/10.1002/adem.202302122 SN - 1527-2648 SP - 1 EP - 17 PB - Wiley AN - OPUS4-59931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of austenitic stainless steel AISI 316L N2 - The elastic properties (Young's modulus, shear modulus) of austenitic stainless steel AISI 316L were investigated between room temperature and 900 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled sheet). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L PY - 2023 DO - https://doi.org/10.5281/zenodo.7813835 PB - Zenodo CY - Geneva AN - OPUS4-57288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L JF - Scientific Data N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -