TY - CONF A1 - Reinsch, Stefan A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Arendt, F. A1 - Sierka, M. A1 - Diegeler, A. T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.06.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial identification of powders N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming (SEM, TEM). Within the European project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nano-/non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The correct identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions of the particles. For particles containing micro-pores or having a microporous coating false positive results will be produced. Furthermore, broad particle size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and to improve this good available and agglomeration tolerant method. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - VSSA KW - Nanomaterial screening KW - Nano-powder characterization PY - 2018 AN - OPUS4-45099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 AN - OPUS4-50940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Schmid, Thomas A1 - Deubener, J. T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Assessment of EN AW-2618A for high temperature applications considering aging effects N2 - The alloy EN AW-2618A was assessed regarding its properties for high temperature applications considering aging effects. T2 - BAM TMF-Workshop 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron microscopy (DFTEM) PY - 2019 AN - OPUS4-49808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, Nikolai A1 - Milkin, P. A1 - Evdokimov, P A1 - Putlayev, V. A1 - Günster, Jens A1 - Nicolaides, Dagmar T1 - Bioceramics from Ca3(PO4)2 - CaKPO4 - CaNaPO4 system for bone replacement and grafting N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductivity/osteoinductivity. Nowadays, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widespread ceramics for bone grafting at the market, however, their resorption is reported, in some cases, to be not enough. This is why the search for more soluble ceramics compared to HA and TCP looks rather viable. A possible way to increase ceramics solubility leads to partial substitution of Ca2+-ions in Ca3(PO4)2 by alkali castions, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy, but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making study of sintering of aforementioned ceramics highly important. T2 - Biomaterials and Novel Technologies for Healthcare, 2nd International Biennial Conference BioMaH CY - Frascati (Rome), Italy DA - 08.10.2018 KW - Bio Ceramics KW - Bioresorbable PY - 2018 AN - OPUS4-46035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Bulk vs thermal sprayed alumina for insulation applications: A comparison of electrical and dielectrical properties N2 - Additive manufacturing (AM) processes are opening new design possibilities for large scale electrical devices such as power generators. Conventional manufacturing methods use copper rods which are wrapped, vacuum impregnated, bend and welded. These processes are labor-intensive and time-consuming. The introduction of AM methods for manufacturing the copper conductor and electrical insulation can reduce the size of the generator head, the most complex part of the generator. In this study, the electrical and dielectrical properties of additively deposited ceramic layers are investigated and compared with the properties of conventionally fabricated bulk ceramics. The ceramic layers are thermally deposited by atmospheric plasma spraying of a commercially available alumina powder. Bulk ceramics are fabricated by dry pressing and sintering of the same powder. Microstructure and porosity were analyzed by scanning electron microscopy (SEM). Electrical and dielectrical properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructures of sprayed and sintered alumina show significant differences with respect to grain form and porosity. The density of the bulk ceramic is lower than the density of the sprayed layer due to the coarse particle size (d50 = 33 μm). Therefore, data from dense samples of the same chemical composition but lower particle size alumina powder were used for comparison. T2 - Keramik 2022 CY - Online meeting DA - 07.03.2022 KW - High Voltage Insulation KW - Thermal Spray KW - Dielectric Spectroscopy KW - Atmospheric Plasma Spraying PY - 2022 AN - OPUS4-54446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baesso, Ilaria A1 - Altenburg, Simon A1 - Günster, Jens T1 - Co-axial online monitoring of Laser Beam Melting (LBM) N2 - Within the perspective of increasing reliability of AM processes, real-time monitoring allows part inspection while it is built and simultaneous defect detection. Further developments of real-time monitoring can also bring to self-regulating process controls. Key points to reach such a goal are the extensive research and knowledge of correlations between sensor signals and their causes in the process. T2 - BAM workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Laser Beam Melting KW - Process Monitoring KW - Co-axial monitoring KW - 3D imaging PY - 2019 AN - OPUS4-48517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Walter, P A1 - Stargardt, Patrick A1 - Höhne, Patrick A1 - Moos, R A1 - Mieller, Björn T1 - Comparison of design concepts for ceramic oxide thermoelectric multilayer generators N2 - Multilayer thermoelectric generators are a promising perspective to the conventional π-type generators. Ceramic multilayer technology is well established for production of microelectronics and piezo-stacks. Key features of ceramic multilayer technology are full-automation, cost-effectiveness, and the co-firing of all materials in one single step. This requires similar sintering temperatures of all used materials. The development of multilayer thermoelectric generators is a subject of current research due to the advantages of this technology. One of the challenges is the compatibility of the different materials with respect to the specific design. The presented study compares three different designs of multilayer generators based on a given set of material properties. Dualleg, unileg and transverse multilayer generators are compared to conventional π-type generators., the designs are evaluated regarding the expected maximum output power and power density using analytical calculations and FEM simulations. Additionally, the complexity of the production process and material requirements are assessed and design optimizations to simplify production are discussed. Besides the theoretical aspects, unileg multilayer generator prototypes were produced by tape-casting and pressure-assisted sintering. These prototypes are compared to other multilayer generators from literature regarding the power factors of the used material system and the power density. Improvements of the power output by design optimizations are discussed T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spain DA - 13.09.2022 KW - Thermoelectric oxides KW - Thermoelectric generator design PY - 2022 AN - OPUS4-55820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jacome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan T1 - Considerations for nanomaterial identification of powders using volume-specific surface area method N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming. For most measurement methods for particle size determination it is necessary to initially disperse the particles in a suitable liquid. However, as the particle size decreases, the adhesion forces increase strongly, making it more difficult to deagglomerate the particles and to assess accurately the result of this process. Therefore, the success of the deagglomeration process substantially determines the measurement uncertainty and hence, the comparability between different methods. Many common methods such as dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS) or ultrasound attenuation spectroscopy (US) can give good comparable results for the size of nanoparticles, if they are properly separated and stabilized (e.g. in reference suspensions). In order to avoid the use of hardly available and expensive methods such as SEM / TEM for all powders, an agglomeration-tolerant screening method is useful. One of the measurement methods well suited to probe the size of particulate powder is the determination of the volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method was associated also with some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions, but also with the degree of sphericity of the particles. For particles containing micro-pores or having a microporous coating, false positive results are induced. Furthermore, broad particle size distributions made necessary to additionally correct the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach was tested in relation with SEM and TEM measurements. The introduction of a correction term for deviations from sphericity and further additions improved the applicability of VSSA as a screening method. T2 - Partec CY - Nuremberg, Germany DA - 09.04.2019 KW - VSSA KW - Nanoparticles PY - 2019 AN - OPUS4-47874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kranzmann, Axel A1 - Midtlyng, Jan A1 - Schlitte, I.-V. A1 - Escoda de Pablo, S. T1 - Corrosion of VM12 SHC in Salt melt N2 - Alkali and alkaline earth chlorides are discussed as heat storage media and are characterized by their low price and high availability. Disadvantages are a high corrosion rate and formation of Cr6+ ions in the melt, as observed in various binary chlorine salt melts. In our work the system NaCl-KCl-MgCl2 is considered. The storage capacity in this salt system is between 2 and 3 MWh per 10 t salt, depending on composition, melting temperature and working temperature. At the same time the system offers a eutectic line, which allows a high variance of the composition and possibly different corrosion rates can be observed. Corrosion tests in melts were carried out and the corrosion layers investigated. The tests with chloride melts on 12% Cr steel show an inner corrosion zone of up to 40 µm depth after 96 hours. The corrosion mechanisms and potential solutions are discussed. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Salt melt KW - Corrosion KW - VM12 SHC PY - 2019 AN - OPUS4-50759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Crack identification by data fusion in fatigued flat specimens with through-holes - A feasibility study N2 - A numerical pre-study has shown that cracks in a flat sample featuring a drilled hole can be classified into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Fatigue 2018 CY - Poitiers, France DA - 27.05.2018 KW - LCF KW - Crack KW - Data Fusion PY - 2018 AN - OPUS4-45936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. This poster is the summary of the first part of the whole project. In the first part, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the fracture experiment at room temperature is validated numerically. T2 - PhD Day 2019 of BAM CY - Berlin, Germany DA - 22.05.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shakeel, Yusra A1 - Ávila Calderón, Luis Alexander A1 - Abdildina, Gulzaure A1 - Aversa, Rossella A1 - Blumenröhr, Nicolas A1 - Engstler, Michael A1 - Fell, Jonas A1 - Fritzen, Felix A1 - Hartmann, Volker A1 - Herrmann, Hans-Georg A1 - Jejkal, Thomas A1 - Joseph, Reetu A1 - Kirar, Ajay A1 - Laadhar, Amir A1 - Olbricht, Jürgen A1 - Ost, Philipp A1 - Pauly, Cristoph A1 - Pfeil, Andreas A1 - Roland, Michael A1 - Skrotzki, Birgit A1 - Soysal, Mehmet A1 - Stotzka, Rainer A1 - Vitali, Elias T1 - Creating Exemplary RDM Reference Datasets: Technical Process Overview N2 - The aim of the task area Materials Data Infrastructure (TA-MDI) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) is to shape scientific datasets obtained through the Participant Projects (PPs) from a data management perspective conforming to the FAIR principles, making use of the FAIR Digital Object (FAIR DO) concept, including structured metadata and storage solutions. As an example, they apply PP18 (BAM) as a use case to demonstrate the proposed technical workflow. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - NFDI KW - Reference Dataset KW - FAIR KW - Research Data Management PY - 2022 AN - OPUS4-57149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheffler, F. A1 - Tielemann, Christopher A1 - Busch, R. A1 - Kober, M. A1 - Müller, Ralf A1 - Brauer, D. S. T1 - Crystallization of glasses studied with PEEM N2 - A heat treated glass that formed crystals under controlled conditions can be a glass ceramic. A proper understanding of crystallization in glassy melts is needed yet still lacking. Involved processes include the mobility of Elements within the glass during heat treatment and the reorganization of atomic bonds during crystallization. This change in coordination number of certain elements is easily observable in bulk glass samples during heat treatment with XAS. Our plan was to monitor these reorganization processes in situ at the immediate surface during heat treatment with PEEM to get time and spatial resolved data. T2 - Joint Meeting of the Polish Synchrotron Radiation Society and SOLARIS Users CY - Online meeting DA - 09.09.2020 KW - Glass KW - Surface KW - Peem KW - Synchrotron PY - 2020 AN - OPUS4-51336 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of gold microparticles on silicon oxide substrate in the scanning electron microscope N2 - 1. Introduction A normally unwanted process that can arise when converging an electron beam onto, e.g. microparticles, has been called "damage induced by electric field" (DIEF) [1]. By DIEF, the convergent electron beam (CEB) imparts a high amount of energy to the microparticle locally and strongly interacts with its atoms. At a specific current density J, which can be controlled by the convergence angle α, the irradiated material begins to transform. The phenomenon of expelling nanomaterial from microparticles under the influence of a convergent electron beam (CB) in a transmission electron microscope (TEM) has been largely studied [2]. Several types of nanoparticles (NPs) have been observed for different metallic materials and metal oxides after specific CB protocols (P) in the TEM. Thus, DIEF can be used as a promising synthesis method controlled changes of micrometric material to create new nanometric material compositions and morphologies. While these reactions have been observed in situ at the high acceleration voltages associated with TEM, it remains unclear whether the SEM can also be used to fabricate NPs via DIEF. In contrast to TEM there is no possibility to statically convert the electron beam to a range of α to reach the needed J as in TEM. Instead, the scanning parameters and the magnification can be manipulated so as to find an integrated J. Considering that the scanning electron microscope (SEM) is easier to use, more accessible and cheaper than a TEM, here we explore the possibility to transfer the concepts of DIEF known to operate in the TEM for in situ NP generation SEM. 2. Objectives The main goal is to determine whether DIEF can be translated to the SEM perform to controlled in situ fabrication of nanoparticles from microparticles, using gold microparticles on amorphous SiO substrate as precursors. We determine what experimental parameters must be taken into account to create SEM-based CBPs for NP creation in the SEM with these materials. 3. Materials & methods Gold microparticles with diameter of around 1 to 3 µm were deposited on electron transparent amorphous SiO/SiO2 substrate. Using a convergent electron beam protocol (CBP) in a scanning electron microscope (SEM) at an acceleration voltage of 30 kV, the gold microparticles were irradiated until a production of NPs takes place as shown in figure 1. The beam current varied between 16 and 23 nA. 4. Results Depending on the CBP parameters, either only Au NPs or a mixture of Au and Si NPs are produced. The particle size ranges from a few nm up to 100 nm, and it depends on the distance of the NP to the initial position of the microparticle. Further beam parameters such as the dwell time, the effective irradiated volume and particle size determine whether NPs are produced or if the microparticles only are expelled from the substrate without reacting. 5. Conclusion The SEM can be used as an instrument for synthesizing nanomaterials via DIEF. Different CBP protocols can be applied for obtaining either gold nanoparticles or silicon + gold nanoparticles T2 - Microscopy Conference CY - Darmstadt, Germany DA - 26.02.2023 KW - Scanning electron microscopy (SEM) KW - Gold nanoparticles KW - Electron beam induced modification PY - 2023 AN - OPUS4-58261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of microparticles in the electron microscope N2 - Damage induced by electric field (DIEF) that happens in the transmission electron microscope (TEM) when converging the electron beam (e-beam) on microparticles (MPs) can be used to synthesis new nanomaterial and nanomaterial compositions. The research questions are to clarify the limits and possibilities of the method regarding materials that can be produced, systems to which it is applicable and working beam parameters. Synthesis of nano-objects from microparticles using DIEF in TEM could be shown for different materials. Additionally, DIEF using the e-beam in a scanning electron microscope (SEM) can also be used to synthesis nano-objects. A deeper material analysis of this nano-objects was done using TEM and shows that the material of the nanoparticles (NPs) can be gold or/and silicon. Furthermore, the size of the NPs depends on the distance to the center of DIEF whereby the larger NPs are closer to the center. The areas of gold NPs are promising candidates for plasmonic or photonic devices for energy storage or transport. T2 - PhD-Day 2022 CY - Berlin, Germany DA - 06.09.2022 KW - Electron microscopy KW - Electron beam induced modification KW - Gold nanoparticles PY - 2022 AN - OPUS4-58264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Meyer, Christian A1 - Diegeler, A. A1 - Sorg, J. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. T1 - Data-driven Workflow for Accelerated Glass Development (GlasDigital) N2 - As part of a joint project involving the Fraunhofer Institute for Silicate Research (ISC), the Friedrich Schiller University of Jena, the Clausthal University of Technology and the Federal Institute for Materials Research and Testing (BAM), digital tools are to be created for the development of new types of glass materials. Current processes for the production of glasses with improved properties are usually very cost- and energy-intensive due to the low degree of automation and are subject to long development cycles. The use of robotic synthesis processes in combination with self-learning machines is intended to overcome these problems in the long term. The development of new types of glass can then not only be accelerated considerably, but also be achieved with much less effort. In this talk, data generation via a robotic high-throughput glass melting system is presented, which should be the experimental basis for the ontology developed within the project GlasDigital. T2 - Materials Science and Engineering Congress (MSE 2022) CY - Darmstadt, Germany DA - 27.09.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage PY - 2022 AN - OPUS4-56489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Chen, Y.-F. A1 - Contreras Jaimes, A. T1 - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas (GlasDigital) N2 - Das Projekt GlasDigital wurde im allgemeinen vorgestellt, sowie die einzelnen Zwischenstände der verschiedenen Arbeitspakete aller Projektpartner präsentiert. Die allgemeine Porjektvorstellung ist auf deutsch. Die Zwischenstände der Arbeitsinhalte sind auf englisch. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 03.11.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage KW - ML KW - Ontologie KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.G. A1 - Ricking, M. A1 - Kober, E. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detektion von Polymeren im Abwasser eines Klärwerks mittels TED-GC_MS N2 - In den Umweltmedien Wasser, Boden und Luft wird Mikroplastik (MP) gefunden. Mögliche Eintragspfade, besonders Einträge über den Klarlauf kommunaler Klärwerke, sind unklar. Dazu wurde das Klärwerk Ruhleben in Berlin an jeweils vier Tagen im Sommer- und Winterbetrieb beprobt. Es wurde jeweils 1 m3 Klarlauf fraktioniert filtriert (500, 100 und 50 µm Siebe). Weiterhin wurde Rohabwasser exemplarisch untersucht. Als Analyse-methoden wurden die TED-GC-MS und die FTIR Mikroskopie verwendet. Bei der TED-GC-MS wird die Probe zunächst thermisch extrahiert, bevor die charakteristischen Zersetzungsgase mittels einer GC-Säule getrennt und im MS detektiert werden [1,2]. Es ist hier erstmals gelungen, nicht nur das MP zu identi-fizieren, sondern auch eine Massenbilanz zu erstellen und so eine quantitative Auswertung vorzunehmen. Es wurde PE, PS ganzjährig und PP im Sommer gefunden. Das Klärwerk Ruhleben hat einen Rückhalt an MP von 99%. T2 - Wasser 2018 CY - Papenburg, Germany DA - 07.05.2018 KW - Mikroplastik KW - Abwasser KW - TED-GC-MS KW - Bilanzierung PY - 2018 AN - OPUS4-44889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, Christiane T1 - Early oxidation and sulfidation of high temperature model alloys: An EDXRD in situ study N2 - The fundamental impact of sulfur and water on corrosion rates and potential failure of the exposed material is well known. However, the access to the related corrosion mechanism causing material degradation is often a problem to solve. This study investigates the effect of SO2 and water vapor in the initial stages of corrosion of an Fe9Cr0.5Mn model alloy at 650 °C in situ. The analysis was carried out under laboratory conditions using energy-dispersive X-ray diffraction (EDXRD). T2 - Dechema EFC Workshop CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Sulfidation KW - Model alloy KW - Oxidation PY - 2018 AN - OPUS4-46134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - Effect of corrosive atmosphere on the oxidation behavior of CrMnFeCoNi and CrCoNi alloys N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. Adomako et al. carried out oxidation tests in dry air between 800 °C and 1000 °C for 24 h in equiatomic CrCoNi, CrMnCoNi, and CrMnFeCoNi alloys. The authors showed that CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - 10th International Symposium on High-Temperature Corrosion and Protection of Materials CY - Online meeting DA - 28.03.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Effects of microstructure on crack healing in glass matrix composites N2 - Crack healing in glass ceramic solid oxide fuel cell (SOFC) sealants is of utmost importance as cracks caused by thermal cycling remain a bottleneck in developing durable SOFC. Whereas no or low crystal volume fraction seems most favorable for viscous crack healing, it does not for load bearing and undesired diffusion. On the other hand, crystals or filler particles can make the sealant less prone to these disadvantages but it could increase the effective composite viscosity and retard crack healing. Against this background, the influence of crystal volume fraction, phi, on viscous crack healing in glass matrix composites prepared from soda lime silicate glass and zirconia filler particles was studied. Vickers indention induced radial cracks were healed isothermally during interrupted annealing steps and monitored with optical microscopy. Due to the slow crystallization of the glass under study, phi could be kept constant during crack healing. For bulk glass samples (phi = =), the decrease in radial crack length was retarded by an initial increase in crack width due to crack rounding. Up to phi = 0.15 the increase in effective viscosity retarded this crack broadening thereby yielding faster crack healing. For phi > 0.15, crack broadening was progressively suppressed but the same was true for crack healing, which was fully prevented above phi = 0.3. Results indicate that optimum micro structures can prevent crack broadening limited by the global effective composite viscosity and this way promote crack healing limited by local glass viscosity. T2 - 93. Glastechnische Tagung CY - Nürnberg, Germany DA - 12.05.2019 KW - Crack healing KW - Glass matrix composite KW - Vickers indentation PY - 2019 AN - OPUS4-48543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik A1 - Heckel, Thomas A1 - Gohlke, Dirk A1 - Brackrock, Daniel A1 - Manzoni, Anna T1 - Ein synergistischer Ansatz zur Charakterisierung anisotroper Materialien mit Hilfe von Ultraschall und Mikrostrukturanalyse N2 - Es wird eine Studie zur Charakterisierung eines anisotropen Stahls vorgestellt, bei der Ultraschalluntersuchungen mit Mikrostrukturanalysen verbunden werden. Das Material weist hohe Festigkeit und Korrosionsbeständigkeit auf, zugleich ist mit anisotropen Eigenschaften die mechanischen und betrieblichen Eigenschaften beeinflussen zu rechnen. Vorläufige Ergebnisse lassen vermuten, dass weitere Untersuchungen notwendig sind, um die Fähigkeiten und Grenzen des Materials genau zu bestimmen. Es wird ein systematischer Ansatz mit Array- Prüfköpfen, Time-of-Flight Diffraction (TOFD) Technik und mikrostrukturellen Untersuchungen angewendet, um die Wechselwirkung zwischen Anisotropie und Mikrostruktur des Stahls zu analysieren. Ultraschallprüfungen mit der TOFD-Technik und in Tauchtechnik liefern Einblicke in das anisotrope Verhalten des Werkstoffes, einschließlich entsprechenden Kornorientierung, Dämpfung und Schallgeschwindigkeitsvariation. Diese Messungen führen in Verbindung mit mikrostrukturellen Analysen zu einem tieferen Verständnis des Materialverhaltens. Unser Hauptziel ist es, ein Framework zu erstellen, welches die Ultraschallantwort anisotroper Materialien mit ihren mikroskopischen Struktureigenschaften verbindet. Die vorgestellte Methodik ermöglicht eine zerstörungsfreie und zügige Bewertung der Materialintegrität, was besonders bei der Anwendung von Hochleistungsmaterialien relevant ist. Durch diesen integrativen Ansatz werden verschiedener Charakterisierungsmethoden kombiniert, um ein umfassenderes Materialverständnis zu erreichen. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Ultrasonic Testing KW - Time-offlight Diffraction (TOFD) KW - Microstructure Analysis KW - Non-Destructive Testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600122 UR - https://www.ndt.net/?id=29535 AN - OPUS4-60012 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Poquillon, D. A1 - Ruffini, A. A1 - Le Bouar, Y. A1 - Finel, A. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Ijaz, M. T1 - Etude expérimentale des mécanismes de fermeture des pores par CIC dans un superalliage monocristallin CMSX4 N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of singlecrystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HIPed at temperatures between -solvus and solidus where superalloy has no strengthening -phase and therefore is very soft. For example, the company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288°C, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIPing as well as to plan the parameters of the HIP process. N2 - Les aubes de turbines à gaz utilisées en particulier pour les turboréacteurs de l’aéronautique sont élaborées par fonderie en superalliage monocristallin à base de nickel. Le procédé de fonderie, ainsi que les traitements thermique d’homogénéisation réalisés à très haute température, induisent la présence de pores au sein des pièces qui affectent les propriétés mécaniques et la durée de vie des aubes. Afin de réduire cette porosité les motoristes effectuent un traitement de compression isostatique à chaud (CIC) au cours duquel la porosité diminue par fermeture des pores. Afin de mieux comprendre les mécanismes impliqués au cours du traitement de CIC, nous avons lancé un programme de recherche dans le cadre du projet ERA-Net MICROPORE. La modélisation par champ de phase des mécanismes en jeu est présentée au cours de ce colloque. Nous présentons dans cette affiche un des volets de la caractérisation expérimentale du projet. Des échantillons de superalliage CMSX4 sont observés après traitement de mise en solution et CIC sous 103 MPa à 1288°C pour différentes durées. Les pores présents sont caractérisés par microscopie électronique à balayage (MEB) afin de suivre l’évolution du taux de porosité au cours du traitement. Une caractérisation plus détaillée de pores partiellement refermés est menée par MEB et grâce à la diffraction des électrons rétrodiffusés (EBSD). Une vision tridimensionnelle de ces défauts est obtenue par des coupes métallographiques effectuées par découpe ionique (FIB). Le projet ERA – Net MICROPORE est financé en Allemagne par la DFG (projects EP 136/1-1 and FE933/2-1) et en France par l’ANR (projects ANR15-MERA-000-03 and ANR15-MERA-0003-04). T2 - Plasticité 2018 CY - Nancy, France DA - 09.04.2018 KW - Creep KW - CMSX4 KW - Superalloy KW - Dislocations PY - 2018 AN - OPUS4-44827 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and wind turbine rotor blades are made up primarily of fiber reinforced plastics. Failure of these materials heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in-situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An inhouse designed compact tensile testing machine with a load range up to 15 kN was integrated into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. This technique allows fast measurements over large fields-of-view and is ideal for in-situ investigations. T2 - 12th BESSY@HZB User Meeting 2020 CY - Online meeting DA - 10.12.2020 KW - Carbon Fiber Reinforced Plastics KW - Crack evolution KW - Diffraction Enhanced Imaging KW - In situ tensile test KW - X-ray refraction PY - 2020 AN - OPUS4-51802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tokarski, T. A1 - Nolze, Gert T1 - Exploring Unconventional Uses of Kikuchi Pattern Analysis N2 - The characterization of really unknown phases typically uses 70 to 150 reflectors for lattice metric calculation. The determination of the lattice parameters follows with 4% accuracy. Including a Z correction up to 1% can be reached. The precision of the lattice parameters ratios (a:b:c) is, however, better than 0.1%. T2 - Oxford Users Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Popiela, Bartosz A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - FEM-Analyse der Reparaturstellen an FKV-Sandwichplatten N2 - Untersuchung des Einflusses des Reparaturpatches auf das Verhalten der reparierten GFK-Sandwichproben unter Zug-, Druck- und Schubbeanspruchung. T2 - 25. Nationales SAMPE-Symposium CY - Kassel, Germany DA - 18.02.2020 KW - Rotorblätter KW - Glasfaserverstärkter Kunststoff KW - Sandwichstruktur PY - 2020 AN - OPUS4-50544 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Kuchenbecker, Petra A1 - Würth, Christian A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Kirzdörfer, Adrian A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - First hints on reorientation of surface crystals N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Very few observations of crystal orientation were focused on separately growing surface crystals. In conclusion, no systematic studies on initially oriented crystal growth or nucleation from defined active surface nucleation sites exists. Therefore, the main objective of this just is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. As a first attempt, we focus on reorientation of separately growing surface crystals during their early growth. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28. Mai 2018 KW - Glass KW - Crystallization KW - BCS PY - 2018 AN - OPUS4-47536 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Kilo, M. A1 - Reinsch, Stefan A1 - Bornhöft, H. A1 - Müller, Ralf A1 - Deubener, J. A1 - Limbach, R. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Diegeler, A. A1 - Pan, Z. T1 - GlasDigital N2 - Der aktuelle Stand des MateriaDigital1 Projektes GlasDigital wird vorgestellt. Hierbei wird allgemein die Problem- und Zielstellung präsentiert, als auch auf 2 separaten Postern die Ergebnisse. Diese beinhalten zum Einen die smarte Gestaltung der robotergestützten Glasschmelzanlage der BAM inkl. Analytik und zum Anderen die Digitalisierungsbestrebungen im Bereich Glas, d.h. ML-gestützte C-S-P-Simulation, Ontologie für den Werkstoff Glas, Digitaler Zwilling des Gießprozesses. T2 - PMD Vollversammlung 2023 CY - Karlsruhe, Germany DA - 21.09.2023 KW - GlasDigital KW - Ontologie KW - Bildanalyse KW - Simulation KW - Roboter KW - Digitalisierung PY - 2023 AN - OPUS4-58734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Glass fracture surface energy calculated from crystal structure and bond-energy data N2 - Enhancing the fracture toughness is still one of the major challenges in the field of oxide glasses. To screen different glass systems for promising candidates, a theoretical expression for the fracture surface energy, G, linked to the fracture toughness, KIc, is thus of interest. Extending our earlier work on nucleation and surface energies [1], we present a simple approach for predicting the fracture surface energy of oxide glasses, G using readily available crystallographic structure data and diatomic bond energies. The proposed method assumes that G of glass equals the surface fracture energy of the weakest fracture (cleavage) plane of the isochemical crystal. For non-isochemically crystallizing glasses, an average G is calculated from the weighed fracture energy data of the constitutional crystal phases according to Conradt [2]. Our predictions yield good agreement with the glass density- and chemical bond energy-based prediction model of Rouxel [3] and with experimentally obtained G values known at present. [1] C. Tielemann, S. Reinsch, R. Maass, J. Deubener, R. Müller, J. Non-Cryst. Solids 2022, 14, 100093 [2] R. Conradt, J. Non-Cryst. Solids 2004, 345-346, 16 [3] R., Tanguy, Scripta Materialia 2017, 109-13, 137 T2 - DPG Spring Meeting of the Condensed Matter Section CY - Dresden, Germany DA - 26.03.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy PY - 2023 AN - OPUS4-58414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -