TY - JOUR A1 - Tielemann, Christopher A1 - Busch, R. A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Avramov, I. A1 - Müller, Ralf T1 - Oriented surface nucleation in diopside glass N2 - Es wird die Texturbildung in kristallisierendem Diopsidglas im Zusammenhang mit der Oberflächenbeschaffenheit der unbehandelten Probe untersucht. Zudem wird der diskutiert, dass es sich bei der Texturbildung in Gläsern höchstwahrscheinlich um ein Nukleationsphänomen handelt welches auf die richtungsabhängige Grenzflächenenergie der kristallisierenden Phase zurückzuführen ist. N2 - Oriented surface crystallization on polished diopside glass surfaces has been studied with scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and laser scanning microscopy. An orientation preference of [001] parallel to the glass surface was detected for separately growing diopside crystals even as small as 700 nm in size. This finding shows that crystal orientation occurs in the outermost surface layer without crystal-crystal interaction and indicates that the crystal orientation is a result of oriented nucleation. Depending on surface preparation, monomodal crystal orientation distributions with [100] perpendicular to the surface or bimodal distributions with [100] and [010] perpendicular to the glass Surface were detected. It was also shown that the degree of crystal orientation increases with decreasing Surface roughness. The observed orientation of diopside crystals could be explained in terms of the interfacial energies of different crystal faces. KW - Surface energy KW - Glass ceramic KW - Glass KW - EBSD KW - Diopsid PY - 2021 UR - https://www.sciencedirect.com/science/article/pii/S002230932100020X DO - https://doi.org/10.1016/j.jnoncrysol.2021.120661 SN - 0022-3093 VL - 562 PB - Elsevier B.V. AN - OPUS4-53073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Finn, Monika A1 - Uhlemann, Patrick A1 - Meyer, Christian A1 - Scheuerlein, C. A1 - Amez-Droz, M. A1 - Meuter, F. A1 - Konstantopoulou, K. A1 - Savary, F. A1 - Tock, J.-P. T1 - Thermomechanical properties of polymers for use in superconducting magnets N2 - The coefficient of thermal expansion (CTE) and the thermomechanical properties of the polymers used in superconducting magnets need to be known in order to predict their stress state under the different magnet assembly and operating conditions. We have measured Young’s moduli of typically used polymers during in situ heat cycles with the dynamic resonancemethod. The dynamic test results are compared with Young’s moduli determined from quasi-static stress–strain measurements at room temperature, 77 K and 4.2 K. A moderate elastic anisotropy is found for the fiber reinforced polymers. CTEs are compared based on dilation experiments. TheCTEs of the fiber reinforced polymers studied are similar to those of copper or steel. In contrast, the pure resins exhibit relatively larger CTEs. KW - Polymer KW - Superconducting magnet KW - Young´s modulus KW - Stress-strain behavior KW - Resonance testing KW - Coefficient of thermal expansion PY - 2019 DO - https://doi.org/10.1109/TASC.2019.2898321 SN - 1051-8223 SN - 1558-2515 VL - 29 IS - 5 SP - 7701605, 1 EP - 5 PB - IEEE AN - OPUS4-47616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, V.V. A1 - Tielemann, Christopher A1 - Avramova, K. A1 - Reinsch, Stefan A1 - Tonchev, V. T1 - Modelling crystallization: When the normal growth velocity depends on the supersaturation N2 - The crystallization proceeds by the advance of the crystal faces into the disordered phase at the expense of the material excess, the supersaturation. Using a conservation constraint for the transformation ratio α∈[0,1] as complementing the rescaled supersaturation to 1 and a kinetic law for the normal growth velocity as function of the supersaturation raised to power g, the growth order, we derive an equation for the rate of transformation dα/dt. We integrate it for the six combinations of the three spatial dimensions D = 1, 2, 3 and the two canonical values of g = 1, 2 towards obtaining expressions for αDg. The same equation, with g = 1 and D = n (n is the so called Avrami exponent) is obtained when taking only the linear in α term from the Taylor’s expansion around α = 0 of the model equation of Johnson-Mehl-Avrami-Kolmogorov (JMAK). We verify our model by fitting datasets of α21 and α31 (from α = 0 to αupper = 0.999) with JMAK to obtain from the fit n = 1.725, 2.43, resp. We show further how the values of n depend on the value of αupper to which the fit is performed starting always from 0. Towards building a validation protocol, we start with validating α21 with published results. KW - Crystallization KW - Supersaturation KW - Growth kinetics KW - Growth rate KW - JMAK model PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581706 DO - https://doi.org/10.1016/j.jpcs.2023.111542 SN - 0022-3697 VL - 181 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paskin, A. A1 - Couasnon, T. A1 - Perez, J. P. H. A1 - Lobanov, S. S. A1 - Blukis, R. A1 - Reinsch, Stefan A1 - Benning, L. G. T1 - Nucleation and Crystallization of Ferrous Phosphate Hydrate via an Amorphous Intermediate N2 - The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO4 3−) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+−PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart. KW - Nucleation KW - Crystallization KW - Vivianite KW - Ferrous phosphate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580696 DO - https://doi.org/10.1021/jacs.3c01494 SN - 0002-7863 VL - 145 IS - 28 SP - 15137 EP - 15151 PB - ACS Publications AN - OPUS4-58069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589008 DO - https://doi.org/10.52825/glass-europe.v1i.681 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel T1 - Thin Sol-Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C N2 - Samples of sol-gel alumina coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h. As result of this treatment a 50 µm thick bi-layered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40 µm thick inner oxidation zone was detected. In contrast, the porous, micron thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometers at the interface between steel substrate and coating. In this case high temperature corrosion of the steel was prevented so far. KW - Steel KW - Oxide coatings KW - High-temperature corrosion KW - TEM KW - SEM PY - 2018 DO - https://doi.org/10.1007/s11085-017-9799-0 SN - 0030-770X SN - 1573-4889 VL - 89 IS - 3-4 SP - 453 EP - 470 PB - Springer AN - OPUS4-44472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Sojref, Regine A1 - Kranzmann, Axel T1 - Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating N2 - Technically relevant P92 steel (9% Cr) was coated with a micron-thick porous alumina layer prepared by sol-gel technique and treated with flue gas (60 CO2-30 H2O-2 O2-1 SO2-7 N2 (mole fraction in %)) at 650 ° to mimic an oxyfuelcombustion process. Local defects in the coating were marked using focused ion beam (FIB) technique and were inspected after exposition to hot flue gas atmosphere at 300, 800, and 1300 h, respectively. Local defects like agglomerated alumina sol particles tend to spall off from the coating uncovering the underlying dense chromia scale. Re-coating was found to restore the protection ability from oxidation when repeatedly treated with hot flue gas. Cracks and voids did not promote the local oxidation due to the formation of crystalline Mn/S/O species within and on top of the coating. The protective character of the steel-coating system is a result of (i) the fast formation of a dense chromia scale at the surface of sol-gel alumina-coated P92 steel bars in combination with (ii) the porous alumina coating acting as diffusion barrier, but also as diffusion partner in addition with (iii) fast Mn outward diffusion capturing the S species from flue gas. KW - Alumina coatings KW - Oxyfuel KW - Steel P92 KW - High temperature corrosion PY - 2018 DO - https://doi.org/10.1002/maco.201709712 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 69 IS - 4 SP - 492 EP - 502 PB - Wiley-VCH Verlag GmbH&Co. KGaA CY - Weinheim AN - OPUS4-45300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Saliwan Neumann, Romeo T1 - Microstructure of bare and sol-gel alumina-coated nickel-base alloy Inconel 625 after long-term oxidation at 900 °C N2 - Though Ni-base superalloys show a high oxidation and corrosion resistance, coatings could still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 minutes. To evaluate the coating, the oxidation behavior of bare and alumina coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopic studies of sample surfaces and cross-sections showed that (i) in the 3.5 µm – 6.3 mm thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (ii) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (iii) the only 1.8 µm thick sol-gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (i) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (ii) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (iii) no detectable Cr-depleted zone at the alloy surface, and (iv) a narrower zone of formation of Kirkendall pores. KW - Inconel 625 KW - High-temperature oxidation KW - Oxidation protection KW - Sol-gel coating PY - 2019 DO - https://doi.org/10.1007/s11085-019-09888-z SN - 0030-770X VL - 91 IS - 3-4 SP - 395 EP - 416 PB - Springer Science+Business Media AN - OPUS4-47665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nawaz, Q. A1 - Blaeß, Carsten A1 - Mueller, Ralf A1 - Boccaccini, A.R. T1 - Processing and cytocompatibility of Cu-doped and undoped fluoride-containing bioactive glasses N2 - Sintered or additive-manufactured bioactive glass (BG) scaffolds are highly interesting for bone replacement applications. However, crystallization often limits the high-temperature processability of bioactive glasses (BGs). Thus, the BG composition must combine high bioactivity and processability. In this study, three BGs with nominal molar (%) compositions 54.6SiO2-1.7P2O3-22.1CaO-6.0Na2O-7.9K2O-7.7MgO (13–93), 44.8SiO2-2.5P2O3-36.5CaO-6.6Na2O-6.6K2O-3.0CaF2 (F3) and 44.8SiO2-2.5P2O3-35.5CaO-6.6Na2O-6.6K2O-3.0CaF2-1.0CuO (F3–Cu) were investigated. The dissolution and ion release kinetics were investigated on milled glass powder and crystallized particles (500–600 μm). All glasses showed the precipitation of hydroxyapatite (HAp) crystals after 7 days of immersion in simulated body fluid. No significant differences in ion release from glass and crystalline samples were detected. The influence of surface roughness on cytocompatibility and growth of preosteoblast cells (MC3T3-E1) was investigated on sintered and polished BG pellets. Results showed that sintered BG pellets were cytocompatible, and cells were seen to be well attached and spread on the surface after 5 days of incubation. The results showed an inverse relation of cell viability with the surface roughness of pellets, and cells were seen to attach and spread along the direction of scratches. KW - Bioactive glass KW - Crystallization KW - Solubility KW - Cytocompatibility KW - Surface roughness PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598257 DO - https://doi.org/10.1016/j.oceram.2024.100586 SN - 2666-5395 VL - 18 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-59825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prewitz, M. A1 - Gaber, M. A1 - Müller, Ralf A1 - Marotzke, C. A1 - Holtappels, Kai T1 - Polymer coated glass capillaries and structures for high-pressure hydrogen storage: Permeability and hydrogen tightness N2 - The hydrogen tightness of high-pressure hydrogen storage is a Basic criterion for long-term storage. The H2 permeation coefficients of epoxy resin and a glass lacquer were determined to enable the geometric optimization of a glass capillary storage. It was found that the curing conditions have no significant influence on the H2 permeation coefficient of resin. The H2 permeation coefficient of epoxy resin is only about three orders of Magnitude greater than that of borosilicate glass. This suggests that the initial pressure of 700 bar takes about 2.5 years to be halved in capillary array storage. Therefore, a high-pressure hydrogen storage tank based on glass capillaries is ideally suited for long-term storage in mobile applications. KW - Permeability KW - Glass capillaries KW - Coating KW - Hydrogen storage KW - Long-term calculation KW - Epoxy resin PY - 2018 DO - https://doi.org/10.1016/j.ijhydene.2017.12.092 SN - 0360-3199 VL - 43 IS - 11 SP - 5637 EP - 5644 PB - Elsevier AN - OPUS4-44327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Master curve for viscous crack healing N2 - A novel method to generalize kinetic data of viscous crack healing in glasses is proposed. The method assumes that crack healing progress is proportional to the healing time, t, and indirect proportional to viscosity, n. This way, crack length and crack width data, normalized to the initial crack length and plotted versus t/n, allow to compare crack healing progress for different cracks and healing temperatures in a master curve. Crack healing experiments conducted in this study demonstrate the applicability of this method for a commercial microscope slide glass. KW - Crack healing KW - Glass KW - Master curve KW - Vickers indentation PY - 2018 DO - https://doi.org/10.1016/j.matlet.2017.12.082 SN - 0167-577X SN - 1873-4979 VL - 216 SP - 110 EP - 112 PB - Elsevier AN - OPUS4-44300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Finn, Monika A1 - Meyer, Christian A1 - Lackner, F. A1 - Savary, F. A1 - Rehmer, Birgit T1 - Thermomechanical Behavior of the HL-LHC 11 Tesla Nb3Sn Magnet Coil Constituents During Reaction Heat Treatment N2 - The knowledge of the temperature-induced changes of the superconductor volume and of the thermomechanical behavior of the different coil and tooling materials is required for predicting the coil geometry and the stress distribution in the coil after the Nb3Sn reaction heat treatment. In this paper, we have measured the Young’s and shear moduli of the HL-LHC 11 T Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat cycles with the dynamic resonance method. The thermal expansion behaviors of the coil components and of a free standing Nb3Sn wire were compared based on dilation experiments. KW - Superconducting magnet KW - Young`s modulus KW - Thermal expansion KW - Stress-strain-behavior PY - 2018 DO - https://doi.org/10.1109/TASC.2018.2792485 SN - 1051-8223 SN - 1558-2515 VL - 28 IS - 3 SP - 4003806 - 1 EP - 4003806 - 6 PB - IEEE Council on Superconductivity CY - New York AN - OPUS4-44020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 DO - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency N2 - Surface roughness, R Z , normal transmittance, Τ N , total transmittance, Τ T , and photovoltaic (PV) module efficiency, η S , were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200 – 400 μ m), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch ‐ like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch ‐ like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽ 2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. KW - Transmittance KW - Efficiency KW - Photovoltaic modules KW - Roughness KW - Sand blasting PY - 2018 DO - https://doi.org/10.1002/er.3930 SN - 1099-114X SN - 0363-907X VL - 42 IS - 3 SP - 1298 EP - 1307 PB - Wiley & Sons, Ltd. AN - OPUS4-44157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behrens, H. A1 - Bauer, U. A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Müller, Ralf A1 - Deubener, J. T1 - Structural relaxation mechanisms in hydrous sodium borosilicate glasses N2 - Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses. KW - Borosilicate glass KW - Water KW - Relaxation KW - Internal friction KW - Glass transition PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2018.05.025 VL - 497 SP - 30 EP - 39 PB - Elsevier B.V. AN - OPUS4-45608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Thieme, C. A1 - Rüssel, C. T1 - Crystal growth velocities of a highly anisotropic phase obtained via surface and volume crystallization of barium–strontium–zinc silicate glasses N2 - In the past few years, a new phase, Ba0.5Sr0.5Zn2Si2O7 with negative thermal expansion has been described in the literature. Some excess of SiO2 is necessary to produce glasses from which the Ba0.5Sr0.5Zn2Si2O7 phase can be crystallized. Unfortunately, in such glasses usually surface crystallization occurs; however, the addition of nucleating agents such as trace quantities of platinum or relatively high quantities of ZrO2 is necessary to achieve bulk nucleation. These additional components also affect the crystal growth velocity, which furthermore is different for crystal growth from the surface and in the bulk. In this paper, three different chemical compositions containing different ZrO2 concentrations, where one composition additionally contains 100 ppm platinum, are studied with respect to their crystallization behaviour. Although the compositions do not differ much, the crystallization behaviour and also the Crystal growth velocities are surprisingly different. KW - Glass ceramic KW - Crystal growth velocity KW - Low expansion PY - 2020 DO - https://doi.org/10.1007/s10853-020-04773-6 SN - 0022-2461 VL - 55 SP - 10364 EP - 10374 PB - Springer AN - OPUS4-50853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506829 DO - https://doi.org/10.3389/fmats.2020.00066 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Balzer, R. A1 - Kiefer, P. T1 - The influence of water as volatile on crack propagation in soda-lime silicate glass N2 - The talk was given at the Spring School of the SPP1594 in Hannover and summarizes the actual findings about crack growth in water bearing soda-lime silicate glass and a comparison to other oxide glasses. T2 - Spring School des SPP1594 CY - Hannover, Germany DA - 06.03.2018 KW - DCB KW - Soda-lime silicate glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2018 AN - OPUS4-45699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glass N2 - Premature failure of glass under load is caused by sub-critical crack growth (SCCG) originate from microscopic flaws at the surface. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena at the crack tip, the detailed mechanism and the effect of different network formers are still not fully understood. For more clarity, various soda silicate glasses with a second network former were investigated by double cantilever beam technique: Na2O*Al2O3*SiO2 (NAS), Na2O*B2O3*SiO2 (NBS), Na2O*PbO*SiO2 (NPbS). Three effects on the crack growth velocity, v, versus stress intensity, KI, curves were found out. The slope in region I, which is limited by corrosion, increases in the order NAS < NBS ≲ NPbS. The velocity range of region II reflecting the transition between corrosion effected and inert crack growth (region III), varies within one order of magnitude between the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For comparison, crack growth at different humidity in commercial soda lime silicate glass (NCS) was measured. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Risswachstum KW - DCB KW - Glas PY - 2018 AN - OPUS4-45702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Statistical analysis of Vickers induced subcritical crack growth in soda-lime silicate glasses N2 - Studies on Vickers induced subcritical crack growth are controversially discussed since the stresses that drive the crack growth are distributed three dimensionally within the material and cannot be retraced by available methods. Hence, empirical approaches are used to calculate mechanical material parameters such as the stress intensity factor KI. However, the results of these approaches show large deviations from those measured by standardized techniques such as double cantilever beam (DCB) or double cleavage drilled compression (DCDC). Yet, small specimen sizes and low specimen quantities can prevent the execution of DCB and DCDC measurements. Here we present an approach that is based on a statistical analysis of Vickers induced radial cracks. For this purpose more than 150 single radial cracks were analyzed. The cracks were generated in a commercial soda-lime silicate glass. The experiments were performed in a glovebox purged with dry nitrogen gas to minimize the influence of atmospheric water on crack growth. The temporally resolved evolution of the radial cracks was monitored in-situ using an inverted microscope equipped with a camera system directly below the Vickers indenter. An automated image analysis software was used to determine the crack length over time. The data show that the crack propagation and thereby the crack velocities are not uniformly but statistically distributed. These findings allow, using the statistical mean value of the distributions in combination with DCB data, a precise formulation of KI for each measured crack length. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Crack growth KW - Soda-lime silicate glass KW - Vickers PY - 2018 AN - OPUS4-45703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-lime silicate glasses N2 - The presence of water in the surrounding atmosphere of a propagating crack has a major influence on the subcritical crack growth. While these external phenomena are well understood, there is still a lack of knowledge on the influence of structurally bound water on crack propagation. Thus, our recent study aims on the analysis of crack propagation in water bearing soda-lime silicate glasses with up to 8 wt.% water. The samples were synthesized in an internally heated pressure vessel at 0.5 GPa. Since this preparation route limits the sample sizes, standard test geometries allowing for the determination of stress intensity factors, such as double cantilever beam, are not feasible. Thus, radial cracks in the hydrous glasses were initiated by Vickers indentation and crack growth was simultaneously captured with a camera system. An automated image analysis algorithm was used for the analysis of the crack length of each single video frame. To minimize influences by atmospheric water, all experiments were conducted in a glovebox purged with dry N2. About 150 cracks per glass composition were analyzed to provide statistical significance of the Vickers-induced SCCG. The results show that structurally bound water has a major influence on SCCG by means of crack lengths, growth rates and time of crack initiation. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Water speciation KW - Soda-lime silicate glass KW - Crack growth KW - Vickers PY - 2018 AN - OPUS4-45704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Balzer, R. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Statistical analysis of subcritical crack growth in water bearing soda-lime silicate glasses N2 - The talk was given at the PNCS-ESG 2018 in Saint Malo and summarizes the actual findings about Vickers induced crack growth in water bearing soda-lime silicate glasses. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Water speciation KW - Vickers KW - Crack growth KW - Soda-lime silicate glass PY - 2018 AN - OPUS4-45707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. T1 - VACUUM HOT EXTRACTION (VHE-MS): Concentration, diffusion and degassing of volatiles N2 - Der Vortrag gibt eine Einführung in die Methode der Vakuumheißextraktion und beschreibt die Anwendungsmöglichkeiten der an der BAMN betriebenen Anlage. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.1.2018 KW - Gasabgabe KW - Diffusion KW - Gasgehalt PY - 2018 AN - OPUS4-45665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low H2-diffusity N2 - Effective hydrogen storage capacities are prerequisite for an efficient energy provision using fuel cells. Since glass has low intrinsic hydrogen permeability, it is a promising material for hydrogen storage containers as well as hydrogen diffusion barriers. Previous studies on oxidic glasses suggest a correlation between the glass composition and hydrogen permeation that was derived mainly from silica glass. In the present study, we concentrate on the relationship between thermodynamic (i.e., configurational entropy) and topologic (i.e., free volume, network polymerization) parameters. Experimental data were gathered well below the glass transition temperature, excluding significant effects caused by structural relaxation and chemical dissolution of hydrogen. The results of seven analysed glasses on the SiO2-NaAlO2 joint showed that the hydrogen permeability in fully polymerized glasses cannot solely be derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen solubility and diffusion. Additionally, the results indicate that the configurational heat capacity ΔCp at Tg affects the hydrogen permeability of the investigated glasses. T2 - 92. Glastechnische Tagung der DGG CY - Bayreuth, Germany DA - 28.05.2018 KW - Hydrogen permeability KW - Atomic packing factor KW - Glass composition KW - Diffusion coefficient PY - 2018 AN - OPUS4-45900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Pan, Z.-W. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Ontology KW - Data Space KW - Workflow KW - Robotic melting PY - 2023 AN - OPUS4-60372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, P. A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - OntoCommons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Materials Data Space KW - PMD KW - Glass PY - 2023 AN - OPUS4-60371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Diegeler, A. A1 - Schottner, G. A1 - Niebergall, R. A1 - Kilo, M. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - GlassDigital: Digital Infrastructure for Data-Driven High-Throughput Glass Development N2 - Gläser zeichnen sich durch eine breite und kontinuierlich abstimmbare chemische Zusammensetzung sowie einzigartige Formgebungstechniken aus, was sie oft zur Schlüsselkomponente moderner Hochtechnologien macht. Die Glasentwicklung ist jedoch oft noch zu kosten-, zeit- und energieintensiv. Der Einsatz von robotergestützten Schmelzsystemen, eingebettet in eine Ontologie-basierte digitale Umgebung, soll diese Probleme in Zukunft überwinden. Im Rahmen der BMBF Forschungsinitiative MaterialDigital unternimmt das Verbundprojekt GlasDigital „Datengetriebener Workflow für die beschleunigte Entwicklung von Glas“ erste Schritte in diese Richtung. Das Projektkonsortium, an dem das Fraunhofer ISC in Würzburg, die Friedrich-Schiller-Universität Jena (OSIM), die Technische Universität Clausthal (INW) und die Bundesanstalt für Materialforschung und -prüfung (BAM, Fachgruppe Glas) beteiligt sind, will alle wesentlichen Basiskomponenten für eine beschleunigte datengetriebene Glasentwicklung zusammenführen. Zu diesem Zweck wird ein robotergestütztes Hochdurchsatz-Glasschmelzsystem mit neuartigen Inline-Sensoren zur Prozessüberwachung, auf maschinellem Lernen (ML) basierenden adaptiven Algorithmen zur Prozessüberwachung und -optimierung, neuartigen Werkzeugen für die Hochdurchsatz-Glasanalyse sowie ML-basierten Algorithmen zum Glasdesign, Data Mining sowie Eigenschafts- und Prozessmodellierung ausgestattet. Der Vortrag gibt einen Überblick darüber, wie all diese Komponenten miteinander verzahnt sind, und veranschaulicht ihre Nutzbarkeit anhand einiger Beispiele. T2 - HVG-Fortbildungskurs CY - Offenbach, Germany DA - 27.11.2023 KW - Glas KW - Ontology KW - Workflow KW - Simulation KW - Robotic melting PY - 2023 AN - OPUS4-60386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Niebergall, R. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Puppe, F. A1 - Limbach, R. A1 - Pan, Z. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - lasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - HVG-DGG Fachausschuss I CY - Jena, Germany DA - 03.11.2023 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space PY - 2023 AN - OPUS4-60383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Diegeler, A. A1 - Kilo, M. A1 - Müller, Ralf T1 - Digital material data based glass screening for the systematic development of new glasses N2 - Current German developments for accelerated glass development is presented to an international audience at GOMD 2023. The focus is on a screening device which is embedded in a digital infrastructure. T2 - GOMD CY - New Orleans, LA, USA DA - 04.06.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Kim, Hyunho A1 - Pascavis, Madeleine A1 - Cha, Baekdong A1 - Brambilla, Gabriel A1 - Cho, Young Kwan A1 - Park, Jinho A1 - Vilela, Raquel R. C. A1 - de Camargo, Andrea S. S. A1 - Castro, Cesar M. A1 - Lee, Hakho T1 - Upconverting Nanoparticle-based Enhanced Luminescence Lateral-Flow Assay for Urinary Biomarker Monitoring N2 - Development of efficient portable sensors for accurately detecting biomarkers is crucial for early disease diagnosis, yet remains a significant challenge. To address this need, we introduce the enhanced luminescence lateral-flow assay, which leverages highly luminescent upconverting nanoparticles (UCNPs) alongside a portable reader and a smartphone app. The sensor’s efficiency and versatility were shown for kidney health monitoring as a proof of concept. We engineered Er3+- and Tm3+-doped UCNPs coated with multiple layers, including an undoped inert matrix shell, a mesoporous silica shell, and an outer layer of gold (UCNP@mSiO2@Au). These coatings synergistically enhance emission by over 40-fold and facilitate biomolecule conjugation, rendering UCNP@mSiO2@Au easy to use and suitable for a broad range of bioapplications. Employing these optimized nanoparticles in lateral-flow assays, we successfully detected two acute kidney injury-related biomarkers-kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)-in urine samples. Using our sensor platform, KIM-1 and NGAL can be accurately detected and quantified within the range of 0.1 to 20 ng/mL, boasting impressively low limits of detection at 0.28 and 0.23 ng/mL, respectively. Validating our approach, we analyzed clinical urine samples, achieving biomarker concentrations that closely correlated with results obtained via ELISA. Importantly, our system enables biomarker quantification in less than 15 min, underscoring the performance of our novel UCNP-based approach and its potential as reliable, rapid, and user-friendly diagnostics. KW - Biosensor KW - Upconverting nanoparticles KW - Lateral flow KW - Portable sensor KW - Kidney injury PY - 2024 DO - https://doi.org/10.1021/acsami.4c06117 VL - 16 IS - 29 SP - 38243 EP - 38251 PB - American Chemical Society (ACS) AN - OPUS4-60689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Prewitz, M. A1 - Bardenhagen, A. T1 - H2 permeability of soda-lime, borosilicate and vitreous silica glasses for potential high pressure H2 storage applications N2 - Modern high-pressure H2 tanks consist of fiber-reinforced composite materials and a plastic lining on the inside. The use of glass would drastically increase the H2 barrier effect. This could be achieved with glass liners or fiber-reinforced polymer-bonded glass capillary storage tanks and would enable lower wall thicknesses, higher gravimetric storage densities and variable designs and thus a much more effective use of space. However, the decisive material parameters for the development of these technologies, such as the hydrogen permeation, are unknown. This study focuses on H2 diffusion in glasses of different chemical compositions. H2 permeation is measured by mass spectrometry. For this purpose, the mass spectrometer (MS), which is located in a high vacuum, is separated from the pressure side by the test specimen. Pure H2 gas is present on the pressure side, so that the mass flow is recorded qualitatively and quantitatively in the MS. The permeation coefficients are calculated from the sample geometry and the mass flow rates. The very low H2 permeation of glass is measured on bundles of thin-walled commercially available glass capillaries and compared with the hydrogen permeation data of the glass powder method. T2 - Jahrestagung der Deutschen Glastechnischen Gesellschaft 2024 CY - Aachen, Germany DA - 27.05.2024 KW - Gas permeation KW - Hydrogen gas KW - High pressure gas storage PY - 2024 AN - OPUS4-60420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of glasses and ceramics N2 - Optical glasses and glass ceramics are present in many devices often used in our daily routine, such as the mobile phones and tablets. Since the 1960´s with the development of glass lasers, and more recently, within the search for efficient W-LEDs, sensors and solar converters, this class of materials has experienced extreme research progress. In order to tailor a material for such applications, it is very important to understand and characterize optical properties such as refractive index, transmission window, absorption and emission cross sections, quantum yields, etc. These properties can often be tuned by appropriate compositional choice and post-synthesis processing. In this lecture we will discuss the optical properties of glasses and glass ceramics, relevant to that end. T2 - 2nd CeRTEV Glass School CY - São Carlos, SP, Brazil DA - 22.04.2024 KW - Optical properties of glasses and ceramics PY - 2024 AN - OPUS4-60370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - From guest scintillators to luminescent host-guest hybrid materials and nanoparticles: Contributions from LEMAF N2 - An overview of the research work conducted at LEMAF - the laboratory of spectroscopy of functional materials in IFSC/USP Brazil under my leadership, before I joined BAM was given. T2 - FunGlass Graduate Program School CY - Oponice, Slovakia DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Structure property correlations KW - Host-guest hybrid materials KW - Scintillators KW - Persistent luminescent KW - Phosphors KW - Composite materials PY - 2024 AN - OPUS4-60368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -