TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543955 DO - https://doi.org/10.1557/s43577-022-00280-y VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A.I. A1 - Nolze, Gert A1 - Alymov, M.I. T1 - Pore Morphology in Single Crystals of a Nickel-Based Superalloy After Hot Isostatic Pressing N2 - The morphology of pores partially shrunk during a half-hour HIP at temperature of 1288 °C and pressure of 103 MPa has been investigated in nickel-based superalloy CMSX-4. The investigation resulted in the following findings: surrounding the shrinking pores by a c¢-shell (Ni3Al), faceting of the pores surface by {023} and {011} planes, and formation the submicroscopic satellite pores connected by channels with the neighboring larger pores. It is assumed that the formation of the c¢-shell around the pores and the faceting of the pore surface is due to diffusion processes occurring during pore shrinkage, and therefore these findings can be considered as arguments supporting the vacancy model of pore annihilation. The submicroscopic satellite pores are expected to be the result of dividing the casting pores of a complex initial shape during their shrinking. The connecting channels are probably required for the gas to escape from the rapidly shrinking small satellite pores into the slowly shrinking large pore. Thus, it is reasonable to assume that the casting pores may contain some amount of gas. KW - HIP KW - Superalloy KW - Porosity KW - Faceting KW - negative crystal growth PY - 2022 DO - https://doi.org/10.1007/s11661-022-06893-x SN - 1073-5623 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-56409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, I. A. A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - Experimental Determination of Temperature Dependence of Structural–Phase Parameters of Nickel-Based Superalloy N2 - The temperature dependences of the periods of the crystal lattices of the γ and γ' phases, their dimensional mismatch (misfit), and volume fraction of the γ' phase of an experimental single-crystal hightemperature nickel-based alloy have been determined by X-ray diffraction analysis in the temperature range of 18–1150°C. The temperature ranges in which intense changes in the structural and phase characteristics of the alloy under study take place have been determined. KW - X-ray diffraction analysis KW - High temperatures KW - Nickel-based superalloys KW - Single crystal KW - Crystal lattice period PY - 2022 DO - https://doi.org/10.1134/s2075113322010373 SN - 2075-1133 VL - 13 IS - 1 SP - 171 EP - 178 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-54466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Malakhov, A. A1 - Epishin, A. A1 - Denisov, I. A1 - Saikov, I. A1 - Nolze, Gert T1 - Morphology and Structure of Brass–Invar Weld Interface after Explosive Welding N2 - This paper presents the results of a study of the morphology and structure at the weld interface in a brass–Invar bimetal, which belongs to the class of so-called thermostatic bimetals, or thermobimetals. The structure of the brass–Invar weld interface was analyzed using optical microscopy and scanning electron microscopy (SEM), with the use of energy-dispersive X-ray (EDX) spectrometry and back-scattered electron diffraction (BSE) to identify the phases. The distribution of the crystallographic orientation of the grains at the weld interface was obtained using an e-Flash HR electron back-scatter diffraction (EBSD) detector and a forward-scatter detector (FSD). The results of the study indicated that the weld interface had the wavy structure typical of explosive welding. The wave crests and troughs showed the presence of melted zones consisting of a disordered Cu–Zn–Fe–Ni solid solution and undissolved Invar particles. The pattern quality map showed that the structure of brass and Invar after explosive welding consisted of grains that were strongly elongated towards the area of the highest intensive plastic flow. In addition, numerous deformation twins, dislocation accumulations and shear bands were observed. Thus, based on the results of this study, the mechanism of Cu–Zn–Fe–Ni structure formation can be proposed. KW - Explosive welding KW - Thermobimetal KW - Grain structure KW - Brass KW - Invar PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565964 DO - https://doi.org/10.3390/ma15238587 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 10 PB - MDPI AN - OPUS4-56596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Svetlov, I. L. A1 - Nolze, Gert T1 - Model for Forecasting Temperature Dependence of γ/γ' Misfit in Heat-Resistant Nickel Alloys N2 - An analytical model for forecasting the temperature dependence of γ/γ' misfit in heat-resistant nickel alloys is proposed. The model accounts for the concentration dependences of the periods of crystalline lattices of the γ and γ' phases (Vegard law), thermal expansion of the γ and γ' lattices, and dissolution of the γ' phase at high temperatures. Adequacy of calculations of misfit is confirmed by comparison with the results of measurements using methods of X-ray and neutron diffraction. The model is applied for development of a nickel alloy with positive misfit. KW - Heat-resistant nickel alloys KW - Dimensional mismatch of crystalline lattice periods (misfit) KW - Microstructure evolution PY - 2022 DO - https://doi.org/10.1134/S2075113322010105 SN - 2075-1133 VL - 13 IS - 1 SP - 7 EP - 16 PB - Springer AN - OPUS4-54379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543495 DO - https://doi.org/10.1002/adem.202101573 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, Phillip A1 - Stephan-Scherb, Christiane T1 - Effect of KCl deposits in high‐temperature corrosion on chromium‐rich steels in SO2‐containing atmosphere N2 - High‐temperature corrosion was studied under multiple chemical loads on ferritic‐austenitic model alloys (Fe–13Cr, Fe–18Cr–12Ni, and Fe‐25Cr–20Ni) with KCl deposit under 0.5% SO2/99.5% Ar gas atmosphere at 560°C. Postexposure characterization was done by X‐ray diffraction and scanning electron microscopy. In a pure SO2/Ar environment a protective Cr2O3 scale was formed by all samples. The introduction of KCl deposits causes the scale to be nonprotective and multilayered, consisting of CrS, FeS, Cr2O3, Fe3O4, and Fe2O3. The impact of the microstructure and alloying elements is discussed. KW - High‐temperature corrosion KW - KCl KW - Microstructure KW - SO2 KW - Steel alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543056 DO - https://doi.org/10.1002/maco.202112901 VL - 73 IS - 5 SP - 758 EP - 770 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Cakir, Cafer Tufan A1 - Kasatikov, S. A1 - Schumacher, G. A1 - Manzoni, Anna Maria T1 - Effects of heat treatment on microstructure, hardness and local structure in a compositionally complex alloy N2 - Unlike conventional alloys, high entropy alloys are characterized by one or more solid solution phase(s) without a clearly defined solvent, all element contribute to the matrix in a way that is still not entirely understood. In addition, it is not known to what extent classic thermodynamic rules can be applied to these multi-element alloys, especially concerning the question about what factor incites the matrix to undergo a phase transformation. This work tackles directly some of these aspects on a chosen alloy, Al8Cr17Co17Cu8Fe17Ni33 (at.%), which presents a high temperature single-phase γ state and a two-phase state with γ′ precipitates, above and below 900 ◦C, respectively. A combined investigation via microstructural observations, hardness testing, X-ray absorption and photoelectron spectroscopy was carried out above the γ′ formation temperature. Hardness values are independent of the annealing temperatures, microstructural analysis shows no phase formation and X-ray absorption spectroscopy does not reveal observable changes in neither local atomic nor electronic structure, indicating that approaching γ′ formation temperature is not influenced by atomic or electronic rearrangements. Interestingly, short-range chemical order remains quantitatively compatible at any annealing temperature in the single-phase γ state, and the observed preferred pairs Al–Cu and Al–Ni in the γ state match with the γ’ precipitates composition below 900 ◦C. KW - High entropy alloys KW - EXAFS KW - Short range order KW - Vickers hardness PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2021.125432 SN - 0254-0584 VL - 276 SP - 125432 PB - Elsevier B.V. AN - OPUS4-53760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Boerner, Andreas A1 - Saliwan Neumann, Romeo A1 - Schneider, M. A1 - Laplanche, G. T1 - Influence of machining on the surface integrity of high- and medium-entropy alloys N2 - High- and medium-entropy alloys (HEAs) are a quite new class of materials. They have a high potential for applications from low to high temperatures due to the excellent combination of their structural properties. Concerning their application as components; processing properties, such as machinability, have hardly been investigated so far. Hence, machinability analyses with a focus on the influence of the milling process and its basic parameters (cutting speed, feed per cutting edge) on the resulting surface integrity of specimens from an equiatomic high- (CoCrFeMnNi) and a medium- (CoCrNi) entropy alloy have been carried out. A highly innovative milling process with ultrasonic assistance (USAM) was compared to conventional milling processes. Recent studies have shown that USAM has a high potential to significantly reduce the mechanical load on the tool and workpiece surface during milling. In this study, the basic machining and ultrasonic parameters were systematically varied. After machining, the surface integrity of the alloys was analyzed in terms of topography, defects, subsurface damage, and residual stresses. It was observed that USAM reduces the cutting forces and increases the surface integrity in terms of lower tensile residual stresses and defect density near the surfaces for the CoCrFeMnNi alloy. It was shown that the cutting forces and the metallurgical influence in the sub surface region are reduced by increasing the cutting speed and reducing the feed rate per cutting edge. With the CoCrNi alloy, the tool revealed severe wear. As a result, for this alloy no influence of the parameters on the machinability could be determined. KW - High Entropy Alloy KW - Medium Entropy Alloys KW - Ultrasonic assited machining PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2021.125271 SN - 0254-0584 VL - 275 SP - 125271 PB - Elsevier B.V. AN - OPUS4-53606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nasr Esfahani, M. A1 - Zare Pakzad, S. A1 - Li, T. A1 - Li, X. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Effect of Native Oxide on Stress in Silicon Nanowires: Implications for Nanoelectromechanical Systems N2 - Understanding the origins of intrinsic stress in Si nanowires (NWs) is crucial for their successful utilization as transducer building blocks in next-generation, miniaturized sensors based on anoelectromechanical systems (NEMS). With their small size leading to ultrahigh-resonance frequencies and extreme surface-to-volume ratios, silicon NWs raise new opportunities regarding sensitivity, precision, and speed in both physical and biochemical sensing. With silicon optoelectromechanical properties strongly dependent on the level of NW intrinsic stress, various studies have been devoted to the measurement of such stresses generated, for example, as a result of harsh fabrication processes. However, due to enormous NW surface area, even the native oxide that is conventionally considered as a benign surface condition can cause significant stresses. To address this issue, a combination of nanomechanical characterization and atomistic simulation approaches is developed. Relying only on low-temperature processes, the fabrication approach yields monolithic NWs with optimum boundary conditions, where NWs and support architecture are etched within the same silicon crystal. Resulting NWs are characterized by transmission electron microscopy and micro-Raman spectroscopy. The interpretation of results is carried out through molecular dynamics simulations with ReaxFF potential facilitating the incorporation of humidity and temperature, thereby providing a close replica of the actual oxidation environment - in contrast to previous dry oxidation or self-limiting thermal oxidation studies. As a result, consensus on significant intrinsic tensile stresses on the order of 100 MPa to 1 GPa was achieved as a function of NW critical dimension and aspect ratio. The understanding developed herein regarding the role of native oxide played in the generation of NW intrinsic stresses is important for the design and development of silicon-based NEMS. KW - Nanoelectromechanical systems (NEMS) KW - Silicon nanowires KW - Native oxide KW - Intrinsic stress KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560471 DO - https://doi.org/10.1021/acsanm.2c02983 SN - 2574-0970 VL - 5 SP - 13276 EP - 13285 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by GD-OES N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Empa Group Meeting CY - Dübendorf, Switzerland DA - 22.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wang, L. T1 - Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys N2 - The elastic energy of mixing for multi-component solid solutions is derived by generalizing Eshelby's sphere-in-hole model. By surveying the dependence of the elastic energy on the chemical composition and lattice misfit, we derive a lattice strain coefficient λ*. Studying several high-entropy alloys and superalloys, we propose that most solid solution multi-component alloys are stable when λ*<0.16, generalizing the Hume-Rothery atomic-size rule for binary alloys. We also reveal that the polydispersity index δ, frequently used for describing strain in multi-component alloys, directly represents the elastic energy e with e=qδ², q being an elastic constant. Furthermore, the effects of (i) the number and (ii) the atomic-size distribution of constituting elements on the phase stability of high-entropy alloys were quantified. The present derivations and discussions open for richer considerations of elastic effects in high-entropy alloys, offering immediate support for quantitative assessments of their thermodynamic properties and studying related strengthening mechanisms. KW - Ordering KW - High-entropy alloys KW - Alloy design KW - Strain energy KW - Phase stability PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2021.114226 SN - 1359-6462 VL - 206 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-53427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xing, H. A1 - Jing, H. A1 - Dong, X. A1 - Wang, Lei A1 - Han, Y. A1 - Hu, R. T1 - Cellular growth during rapid directional solidification: Insights from quantitative phase field simulations N2 - In this paper, columnar cellular growth with kinetic effects including kinetic undercooling and solute trapping in rapid directional solidification of alloys was investigated by using a recent quantitative phase-field model for rapid solidification. Morphological transition and primary spacing selection with and without kinetic effects were numerically investigated. Numerical results show that doublon structure is an intermediate state in the primary spacing adjustment of cellular arrays. It was found that the inclusions of kinetic effects result in the increase of the solute in the solid phase and the solute enrichment in the interdendritic liquid channel. Moreover, predicted results indicate that the growth directions of the cellular arrays in rapid directional solidification with and without kinetic effects are independent of the Péclet number. Therefore, the kinetic effects play important roles in numerical simulations of the growth pattern selection and solute distribution during rapid solidification. Neglecting them will result in the inaccurately predicted results. KW - Rapid solidification KW - Phase-field model PY - 2022 DO - https://doi.org/10.1016/j.mtcomm.2022.103170 VL - 30 SP - 103170 PB - Elsevier Ltd. AN - OPUS4-54571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Grain boundary structural variations amplify segregation transition and stabilize co-existing spinodal interfacial phases N2 - Grain boundaries (GBs)’s role in determining the functional and mechanical properties of polycrystalline materials is inscribed in both their structure and chemistry. Upon solute segregation, the structure and composition of a GB can change concurrently. We study the co-evolution of GB’s structure and segregation by enhancing the density-based phase-field model to account for the in-plane structural variations in the GB. Significant mutual coupling is revealed between the GB’s chemical and structural states during Mn segregation in Fe-Mn alloys. We found that the structural degrees of freedom in a GB (the ability of the GB structure to respond to the chemical variation) amplifies Mn segregation transition, even when the GB structure stays unchanged. When the GB structure is not uniform, that is the usual case, the coupling between GB structure and segregation evolution also enables the spinodally formed low- and high-Mn phases (upon segregation transition) to co-exist within the GB region. These findings explain the stabilizing mechanism of pronounced interfacial segregation fluctuations, experimentally evidenced in Fe-Mn GBs, and give new insights on the structural sensitivity of GBs’ segregation phenomena and the mutual chemo-structural interplay. KW - Grain boundary engineering KW - Segregation engineering KW - Grain boundary structure KW - Fe-Mn steels PY - 2022 DO - https://doi.org/10.1016/j.actamat.2022.118446 SN - 1359-6454 VL - 242 PB - Elsevier Ltd. AN - OPUS4-56160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Grain Boundary Segregation Design using CALPHAD-integrated Phase-Field Modelling N2 - A main source of current challenges in materials science and engineering is the ever-increasing complexity in materials chemistry and processing resulting in complex microstructures, making the assessment of process-microstructure-property-performance relations difficult, even unmanageable. Here the computational materials science is facing the same situation. In this talk, I share a viewpoint that the complexities in chemistry, processing and microstructures can be circumscribed by integrating existing knowledges of bulk thermodynamics and kinetics to the unknown thermodynamics and kinetics of microstructure elements. To this end, I discuss several successful examples on grain boundary segregation engineering how this scientific advance can be conducted. A roadmap is proposed, beginning to form on generalizing the concept of phase diagrams. T2 - ICAMS Advance Discussions: Advanced models for microstructure evolution – process-microstructure-property relationships CY - Bochum, Germany DA - 26.10.2022 KW - Microstructure Design KW - CALPHAD KW - Phase-Field Simulations KW - Machine Learning KW - Phase Diagrams PY - 2022 AN - OPUS4-56348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - CALPHAD integrated density-based phase diagrams and opening possibilities for grain boundary engineering N2 - Engineering grain boundaries demands a quantitative description of both their segregation and specific phase behavior. Recently I have proposed a density-based model for grain boundary thermodynamics that enables CALPHAD integrated derivation of grain boundary phase diagrams, broadly applied now in studying various alloys. Combining this model with experimental investigations, in this talk, new aspects of interfacial segregation and phase transformation revealed in polycrystalline alloys are discussed. The effect of elastic interaction on grain boundary phase behavior is incorporated. We consider Al alloys and novel high-entropy alloys and discuss a general strategy for grain boundary engineering. T2 - 18th Discussion Meeting on Thermodynamics of Alloys (TOFA) CY - Krakow, Poland DA - 12.09.2022 KW - CALPHAD KW - Microstructure Design KW - Materials Modelling PY - 2022 AN - OPUS4-56044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Marschall, Niklas A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Hadzic, N. A1 - Birkholz, H. A1 - Grundmann, J. A1 - Chen, Yue A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit T1 - Zugversuchsdaten FAIR integriert: Von der normenkonformen Ontologie bis zu interoperablen Daten im Triple Store N2 - Mit der Digitalisierung von Materialien und Prozessen ist ein Paradigmenwechsel in der Materialentwicklung, -gestaltung und -optimierung verbunden, welcher gleichermaßen vielseitige Möglichkeiten eröffnet und eine große Herausforderung darstellt. Insbesondere sind bei den Digitalisierungsbestrebungen die Qualitätssicherung von Prozessen und Ausgabedaten sowie die Interoperabilität zwischen Anwendungen nach FAIR-Prinzipien (Findability, Accessibility, Interoperability, Reusability) sicherzustellen. Dies umfasst die Speicherung, Verarbeitung und Abfrage von Daten in möglichst standardisierter Form, wobei entsprechend auch Normungs- und Standardisierungsgremien beteiligt werden müssen. Um der Herausforderung gerecht zu werden, Materialdaten für alle Beteiligten konsistent zu kontextualisieren, müssen alle notwendigen Informationen zum Zustand des Materials inklusive produktions- und anwendungsbedingter Veränderungen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Hierfür sollen Ontologien genutzt werden, da sie maschinenverständliche und -interpretierbare Wissensrepräsentationen durch semantische Konzeptualisierungen ermöglichen, die für das Datenmanagement und die Digitalisierung im Bereich der Materialwissenschaften benötigt werden. Dieses hochaktuelle Thema der Integration und Wiederverwendung von Wissen und Daten aus Herstellung, Bearbeitung und Charakterisierung von Materialien wird in den Projekten Innovationsplattform MaterialDigital (PMD, materialdigital.de) und Materials-open-Lab (Mat-o-Lab, matolab.org) adressiert. Diese beiden unter der Beteiligung der Bundeanstalt für Materialforschung und -prüfung (BAM) durchgeführten Projekte wurden auf der 39. Vortrags- und Diskussionstagung „Werkstoffprüfung“ (2021) grundlegend vorgestellt. In dieser Präsentation sollen die Weiterentwicklungen hinsichtlich der Speicherung von Zugversuchsdaten gemäß einer normenkonformen ontologischen Repräsentation vorgestellt werden. Das umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verknüpfung von Ontologie und Daten. Letztendlich können die entsprechenden Daten in einem Triple Store abgelegt und abgefragt werden. Die übliche Standardisierung von mechanischen Prüfverfahren im Bereich der Materialwissenschaft und Werkstofftechnik dient als solide Grundlage für die Ontologieentwicklung. Daher wurde der Zugversuch von Metallen bei Raumtemperatur nach DIN EN ISO Norm 6892-1:2019-11 als einer der ersten Anwendungsfälle in den genannten Projekten ausgewählt. Die Betrachtung und Beschreibung des Zugversuchs beinhaltet sowohl dessen ontologische Darstellung als auch eine exemplarische Datengenerierung. Die semantische Verbindung von Ontologie und Daten führt zu Interoperabilität und einer verbesserten Abfragefähigkeit. T2 - Tagung Werkstoffprüfung 2022 CY - Dresden, Germany DA - 27.10.2022 KW - Ontologie KW - Semantisches Web KW - Wissensrepräsentation KW - Digitalisierung KW - Zugversuch PY - 2022 AN - OPUS4-56130 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, Henk A1 - Grundmann, J. A1 - Grübler, N. A1 - Marschall, Niklas A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit A1 - Waitelonis, J. A1 - von Hartrott, P. T1 - FAIR tensile test data in PMD: From a standard-compliant application ontology to RDF data in a triple store N2 - Following the new paradigm of materials development, design and optimization, the digitalization of materials and processes is the main goal which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. This includes storage, processing and querying of data in a preferably standardized form, also addressing the incorporation of standardization bodies. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and semantic conceptualizations that are needed for data management and the digitalization in the field of materials science. With respect to this currently ever-growing topic of integration and reuse of data and knowledge from synthesis, production and characterization of materials, this presentation shows the efforts taken within the project Platform MaterialDigital (PMD, materialdigital.de) to store tensile test data in accordance with a standard-compliant ontological representation. The includes the path from developing an ontology in accordance with the respective standard, converting ordinary and arbitrarily selected data gained from standard tests into the interoperable RDF format, up to connecting the ontology and data, respectively. Finally, such data can be queried from a triple store. In the field of material science and engineering (MSE), most mechanical test methods are standardized which serves as a valid basis for ontology development. Therefore, the well-known tensile test of metals at room temperature (DIN EN ISO standard 6892-1:2019-11) was selected to be considered as one of the first use cases in PMD. This consideration within the PMD features both, the ontological representation of such a tensile test in accordance with the standard as well as exemplary data generation. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - S355 steel sheet KW - Mechanical testing KW - Tensile test KW - Digitization KW - Ontology KW - Data structure KW - Material digital PY - 2022 AN - OPUS4-55882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Butz, Adam A1 - Rehmer, Birgit A1 - Mäde, Lucas A1 - Vöse, Markus T1 - Experimental and analytical investigation of Low Cycle Fatigue Damage at notches in a polycrystalline Nickel base superalloy N2 - Turbine blades often contain cylindric holes used to generate an air film that protects the blade alloy from the hot gases. These cooling holes of diameter around one mm are drilled by laser through the thickness of the blades. Unfortunately, the resulting stress concentration and the drilling-induced damage are known to favor crack initiation from the holes. It is thus necessary to assess the impact of these cooling holes on the structural integrity of the blades. Since cracks initiate very readily, the fatigue life of the components is mainly controlled by the propagation of the cracks in the stress gradient induced by the holes. For this purpose, displacement controlled high-temperature LCF (Low-Cycle-Fatigue) tests were performed with center hole specimens of a coarse-grained Nickel base Superalloy. The tests were stopped after a defined load drop. In addition, crack propagation tests with Double Edge Notch specimens were performed. Moreover, specimens with different hole surface finishes were investigated, which showed a detrimental effect of the hole surface roughness. In parallel, an evaluation of the LCF tests based on a fracture mechanics-based model (Madia et al., Eng. Fract. Mech., 2018) has been applied. Thereby, the specimen life is controlled by the crack propagation time until failure. Crack growth is controlled by a modified NASGRO equation accounting for large-scale yielding and a progressive build-up of crack closure. The initial crack size has been derived from the measurements of defects around the borehole. A reasonable agreement between predicted and measured lifetimes is observed if one keeps in mind the large uncertainty regarding the effective shape of the cracks. T2 - 23rd European Conference on Fracture CY - Funchal, Madeira, Portugal DA - 27.06.2022 KW - Nickel-base superalloys KW - Notches KW - LCF PY - 2022 AN - OPUS4-55338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Butz, Adam A1 - Rehmer, Birgit A1 - Mäde, L. A1 - Schmitz, S. A1 - Vöse, M. T1 - Experimental and analytical investigation of high temperature fatigue crack growth at notches in a polycrystalline Nickel base superalloy N2 - The scatter of fatigue crack growth data can become significant for coarse grained materials. By using a probabilistic description of crack propagation as the foundation of a lifetime prediction model, lifetime scatter of laboratory specimens can be reproduced. However, the lifetime of real components is subjected to additional scattering factors such as surface condition or uncertainty regarding direction and shape of emerging cracks. These factors need to be addressed in order to exploit the advantages of probabilistic description, i.e. the reduction of unnecessary conservatisms. High temperature LCF (Low-Cycle-Fatigue) tests were performed with center hole specimens of a coarse-grained Nickel base Superalloy. In addition, crack propagation tests with Double Edge Notch specimens were performed. A procedure to detect the shape of the starting crack that combines the potential drop method and induction thermography was developed. The geometry and the number of notches were varied. Moreover, specimen with different hole surface finishes were investigated, which showed a detrimental effect of the roughness of the hole surface. The results have been compared to predictions of a probabilistic tool for the estimation of lcf lifetime that has been calibrated beforehand on laboratory specimens with and without notches. In parallel, a fracture mechanics-based lifetime model was developed, which includes the initial crack size as a critical parameter. Thereby, the influence of the large grain size (>1mm), and the shape of the starting crack at the notch were considered. Acknowledgements The investigations are conducted as part of the joint research program COOREFLEX-Turbo in the frame of AG Turbo. The work is supported by Siemens AG and the Bundesministerium für Wirtschaft und Technologie (BMWi) as per resolution of the German Federal Parliament under grant number 03ET7071E. T2 - Low Cycle Fatigue 9 CY - Berlin, Germany DA - 21.06.2022 KW - Nickel-base superalloys KW - Notches KW - LCF PY - 2022 AN - OPUS4-55335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Skrotzki, Birgit T1 - Full dataset of several mechanical tests on an S355 steel sheet as reference data for digital representations N2 - The dataset provided in this repository comprises data obtained from a series of characterization tests performed to a sheet of typical S355 (material number: 1.0577) structural steel (designation of steel according to DIN EN 10025-2:2019). The tests include methods for the determination of mechanical properties such as, e.g., tensile test, Charpy test and sonic resonance test. This dataset is intended to be extended by the inclusion of data obtained from further test methods. Therefore, the entire dataset (concept DOI) comprises several parts (versions), each of which is addressed by a unique version DOI. The data were generated in the frame of the digitization project Innovationplatform MaterialDigital (PMD) which, amongst other activities, aims to store data in a semantically and machine understandable way. Therefore, data structuring and data formats are focused in addition to aspects in the field of material science and engineering (MSE). Hence, this data is supposed to provide reference data as basis for experimental data inclusion, conversion and structuring (data management and processing) that leads to semantical expressivity as well as for MSE experts being generally interested in the material properties and knowledge. KW - S355 steel sheet KW - Mechanical testing KW - Tensile test KW - Charpy test KW - Microstructure analysis KW - Digital representation KW - Data management KW - Data format PY - 2022 DO - https://doi.org/10.5281/zenodo.6778336 PB - Zenodo CY - Geneva AN - OPUS4-55141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Wei, Y. A1 - Kühbach, M. A1 - Zhao, H. A1 - Vogel, F. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. A1 - Raabe, D. A1 - Gault, B. T1 - Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data N2 - Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. KW - Machine learning KW - Digitalization KW - Alloy microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543049 DO - https://doi.org/10.1016/j.actamat.2022.117633 SN - 1359-6454 VL - 226 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-54304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545906 DO - https://doi.org/10.1016/j.matdes.2022.110593 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza T1 - Melting upon Coalescence of Solid Nanoparticles N2 - The large surface-to-volume ratio of nanoparticles is understood to be the source of many interesting phenomena. The melting temperature of nanoparticles is shown to dramatically reduce compared to bulk material. Yet, at temperatures below this reduced melting point, a liquid-like atomic arrangement on the surface of nanoparticles is still anticipated to influence its properties. To understand such surface effects, here, we study the coalescence of Au nanoparticles of various sizes using molecular dynamics simulations. Analysis of the potential energy and Lindemann index distribution across the nanoparticles reveals that high-energy, high-mobility surface atoms can enable the coalescence of nanoparticles at temperatures much lower than their corresponding melting point. The smaller the nanoparticles, the larger the difference between their melting and coalescence temperatures. For small enough particles and/or elevated enough temperatures, we found that the coalescence leads to a melting transition of the two nominally solid nanoparticles, here discussed in relation to the heat released due to the surface reduction upon the coalescence and the size dependence of latent heat. Such discontinuous melting transitions can lead to abrupt changes in the properties of nanoparticles, important for their applications at intermediate temperatures. KW - Nanoparticles KW - Molecular Dynamics KW - Surface-induced Melting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552183 DO - https://doi.org/10.3390/solids3020025 VL - 3 IS - 2 SP - 361 EP - 373 PB - MDPI AN - OPUS4-55218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Fully-reversed fatigue behavior of scarf joint repairs for wind turbine blade shell applications N2 - To enable a quick and cost-effective return to service for wind turbine blades, localized repairs can be executed by technicians in the field. Scarf repairs, shown to be highly efficient with a smooth load transition across angled joint walls and a restored aerodynamic profile, are the focus of this work. The failure mechanisms of these structures were examined under quasi-static tensile and fully-reversed cyclic loading. While the scarf ratio was held constant at 1:50, the repair layup was varied between large-to-small and small-to-large. The effect of the presence of resin pockets and the fiber orientation mismatch between parent and repair material on the restored strength of BIAX ±45° glass fiber reinforced polymer scarf joint structures was studied. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Fatigue KW - Scarf repairs KW - Glass fiber reinforced polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569646 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 195 EP - 201 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional OMA and, based on a linear viscoelastic approach, the storage modulus (E';G'), the loss modulus (E'';G'') and the loss angle tan(δ) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young's modulus. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Cross linking KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569651 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 181 EP - 186 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Azevedo do Nascimento, A. A1 - Trappe, Volker A1 - Diniz Melo, J. D. A1 - Cysne Barbosa, A. P. T1 - Fatigue behavior of self-healing glass fiber/epoxy composites with addition of poly (ethylene-co-methacrylic acid) (EMAA) N2 - The interest in repair technologies for polymer composites has increased significantly over the last decades, due to the growing use of these materials in structural applications. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was used as self-healing agent to glass fiber/epoxy composite. Materials with EMAA contents of 2 wt% and 5 wt% were manufactured using Resin Transfer Molding (RTM) and the effects of the healing agent on the properties were investigated using tensile tests and Dynamic Mechanical Analysis (DMA). Results show slight variation of properties, which was more pronounced as the content of EMAA increased. In addition, the healing efficiency was investigated through fatigue tests and the addition of higher content of EMAA increased the number of cycles to failure after the healing activation cycle. KW - Fatigue KW - Glass fiber-epoxy composites KW - Self-healing KW - Smart materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569661 DO - https://doi.org/10.1016/j.polymertesting.2022.107863 SN - 0142-9418 VL - 117 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-56966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan A1 - Fedelich, Bernard A1 - Ganesh, Rahul A1 - Kuna, Meinhard A1 - Skrotzki, Birgit A1 - Kiefer, Björn T1 - A CTOD-based crack growth law for thermomechanical fatigue N2 - Due to combined cyclic mechanical and thermal loading during operation, the material of exhaust gas conducting components of combustion engines is exposed to thermomechanical fatigue (TMF). This leads to formation and growth of cracks, especially at the most highly stressed points of these components. In order to better predict the service life of cracked components before failure, it is necessary to identify a crack propagation law for the material used. Isothermal crack propagation tests have been carried out at several temperatures with a typical cast iron to identify such a law. The crack length is measured by the potential drop method. The compliance method, fractography and thermographic camera measurements have been used to validate and calibrate the potential drop measurements. Each of the isothermal tests has been simulated using a specially developed FEM-algorithm based on remeshing and remapping. This algorithm has been implemented in python and ABAQUS. Thereby, the crack tip region is modeled by collapsed Quad8 elements. From the individual simulations, the cyclic crack tip opening displacement (ΔCTOD) is extracted and regarded as a potential fracture mechanics parameter which controls the crack growth rate. By combining the data from the experiments and the simulations, the crack propagation law has been identified. Finally, anisothermal crack propagation tests have been performed for validation of the crack growth law. T2 - European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Fatigue crack growth KW - Finite elmenet simulation KW - TMF experiments PY - 2022 AN - OPUS4-56934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Panzier, Nicole A1 - Zocca, Andrea T1 - Silikatkeramik und Hochleistungskeramik aus dem 3-D-Druck N2 - In diesem Artikel werden die verschiedenen additiven Fertigungsverfahren und ihre Anwendungsmöglichkeiten vorgestellt. Der Fokus liegt hierbei auf Silikatkeramik. Für jedes 3D Druckverfahren werden die Möglichkeiten mit Silikatkeramik, Hochleistungskeramik und Dentalkeramik aufgezeigt. Auf den Nutzen der verschiedenen 3D Druckverfahren für industrielle Anwendungen, den privaten Bereich, sowie die Verwendung für Kunst und Design wird eingegangen. Das Potenzial der Additiven Fertigung wird auch für den Bereich der Keramik in der dentalen Anwendung bewertet. KW - Additive Fertigung KW - 3D Druck KW - Silikatkeramik KW - Hochleistungskeramik PY - 2022 UR - https://www.quintessence-publishing.com/deu/de/article/3634513/quintessenz-zahntechnik/2022/12/silikatkeramik-und-hochleistungskeramik-aus-dem-3-d-druck SN - 0340-4641 VL - 48 IS - 12 SP - 1260 EP - 1268 PB - Quintessence Publ. CY - Berlin AN - OPUS4-56792 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Bayerlein, Bernd A1 - Chen, Yue A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - von Hartrott, P. A1 - Portella, Pedro Dolabella A1 - Waitelonis, J. A1 - Birkholz, H. A1 - Grundmann, J. ED - Zimmermann, M. T1 - Zugversuchsdaten FAIR integriert: Von einer normenkonformen Ontologie bis zu interoperablen Daten im Triple Store N2 - Das hochaktuelle Thema der Integration und Wiederverwendung von Wissen und Daten aus Herstellung, Bearbeitung und Charakterisierung von Materialien ('Digitalisierung von Materialien') wird in den Projekten Innovationsplattform MaterialDigital (PMD, materialdigital.de) und Materials-open-Lab (Mat-o-Lab, matolab.org) adressiert. In diesem Beitrag werden die Weiterentwicklungen in diesen Projekten hinsichtlich der Speicherung von Zugversuchsdaten gemäß einer normenkonformen (DIN EN ISO 6892-1:2019-11) ontologischen Repräsentation vorgestellt. Das umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verknüpfung von Ontologie und Daten. Letztendlich können die entsprechenden Daten in einem Triple Store abgelegt und abgefragt werden. T2 - Werkstoffprüfung 2022 CY - Dresden, Germany DA - 27.10.2022 KW - Ontology KW - Semantic Web KW - Digitalization KW - Knowledge Representation KW - Tensile Test PY - 2022 UR - https://dgm.de/fileadmin/DGM/Veranstaltungen/2022/Werkstoffpruefung/Tagungsband/WP2022-Tagungsband-online.pdf SN - 978-3-88355-430-3 SP - 105 EP - 110 PB - DGM - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-56836 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Manzoni, Anna Maria T1 - Elementverteilung in Hochentropiewürfelchen N2 - Seit Beginn der Luftfahrt Anfang des letzten Jahrhunderts ist die Menschheit auf der Suche nach neuen Materialien, die das Abenteuer Fliegen sicherer, angenehmer, schneller und rentabler gestalten. Hochentropielegierungen sind solche vielversprechenden Materialien. Die richtige Analytik hilft dabei, besser zu verstehen, wie deren Zusammensetzung und atomare Anordnung die makroskopischen Eigenschaften beeinflusst. KW - Chemically complex alloy KW - Transmissionselektronenmikroskopie KW - Energiedisersive Röntgenspektroskopie PY - 2022 UR - https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Analytische_Chemie/Mitteilungsblatt/Internet_AC04-2022.pdf SN - 0939-0065 IS - 4 SP - 12 EP - 14 PB - Gesellschaft Deutscher Chemiker CY - Frankfurt, Main AN - OPUS4-56699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Electrochemical behaviors of casing steel/mortar interface in CO2 saturated aquifer fluid N2 - To reveal the corrosion resistance of casing steel/mortar interface in CO2 injection condition, sandwich samples were prepared and exposed up to 20 weeks in aquifer fluid under 10 MPa and 60 °C. Cross section analysis revealed the crevice corrosion as main mechanism instead of pitting corrosion, which would be expected to happen in the extremely high Chloride concentration. Detailed analysis using EDS line scan shown the slow diffusion of Chloride, suggesting why pitting did not happen after 20 weeks. To mimic the passivated steel surface, the steel coupon was passivated in simulated pore solution having pH 13.5 for 42 days. The passivated coupon was further exposed to NGB solution for 28 days. Electrochemical characterization was performed along the exposure processes to reveal the change in impedance, indicating the corrosion resistance of steel casing/mortar interface. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - CO2 quality KW - Pipeline network KW - CCS PY - 2022 SP - 859 EP - 865 PB - European Federation of Corrosion AN - OPUS4-55622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Lehmusto, Juho A1 - Falk, Florian A1 - Sobol, Oded A1 - Pint, Bruce T1 - Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures N2 - Interpreting high-temperature corrosion induced by mixed-gas atmospheres is challenging due to the different contributions of oxidizing gases. Here, a comprehensive study on the combined oxidation/sulfidation using label molecules is presented. Fe-Cr model alloys with 2 wt% and 9 wt% Cr were isothermally exposed using a volumetric mixture of 0.5%S16O2/27%H218O and 0.5%S16O2/7%H218O at 650 ◦C for 5 h and then characterized by secondary ion mass spectroscopy (SIMS). Additionally, the reactions were followed in-situ utilizing energy dispersive X-ray diffraction. The study showed that both S16O2 and H218O contribute to the oxidation of the alloys but to different extents depending on the Cr-content. KW - SEM KW - Steel KW - Iron KW - SIMS PY - 2022 DO - https://doi.org/10.1016/j.corsci.2022.110236 SN - 0010-938X VL - 203 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cysne Barbosa, Ana Paula A1 - Azevedo do Nascimento, Allana A1 - Pavasarytė, Lina A1 - Trappe, Volker A1 - Melo, D. T1 - Effect of addition of thermoplastic self-healing agent on fracture toughness of epoxy N2 - Self-healing agents have the potential to restore mechanical properties and extend service life of composite materials. Thermoplastic healing agents have been extensively investigated for this purpose in epoxy matrix composites due to their strong adhesion to epoxy and their ability to fill in microcracks. One of the most investigated thermoplastic additives for this purpose is poly(ethylene-co-methacrylic acid) (EMAA). Despite the ability of thermoplastic healing agents to restore mechanical properties, it is important to assess how the addition of thermoplastic healing agents affect properties of the original epoxy material. In this work, EMAA was added to epoxy resin and the effect of the additive on fracture toughness of epoxy was evaluated. Results indicate that although added in low concentrations, EMAA can affect fracture toughness. T2 - 6th Brazilian Conference on Composite Materials CY - Tiradentes, Minas Gerais, Brazil DA - 14.08.2022 KW - Epoxy KW - Self-healing KW - Thermoplastic KW - Fracture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572707 SN - 978-65-00-49386-3 DO - https://doi.org/10.29327/566492 SN - 2316-1337 SP - 219 EP - 222 AN - OPUS4-57270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Maiwald, Michael A1 - Bresch, Sophie A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Sensoren und Analytik für Sicherheit und Prozesskontrolle in Wasserstofftechnologien N2 - Der Beitrag beinhaltet Themen vom H2Safety@BAM-Kompetenzfeld Sensorik, Analytik und zertifizierte Referenzmaterialien (SensRef) mit Fokus auf Mess- und Prüfverfahren mit verschiedenen Sensortechnologien und Ultraschallwellen: Metrologie zur Wasserstoffspeicherung - Euramet-Vorhaben "MefHySto", Erkennung von freigesetztem Wasserstoff sowie die Bestimmung des Wasserstoff-Luftverhälntisses mit Gassensoren, zerstörungsfreie Fehlstellenerkennung mit integriertem Zustandsüberwachungssystem basierend auf geführten Ultraschallwellen zur Lebensdauerüberwachung von Composite-Behältern (Wasserstoffspeicher) sowie faseroptische Sensorik zur Schadenfrüherkennung von Wasserstoffspeichern aufgrund erkennbarer Dehnungsänderungen an Druckbehältern. T2 - DVGW Kongress H2 Sicherheit CY - Online meeting DA - 23.11.2022 KW - H2Safety@BAM KW - SensRef KW - Faseroptische Sensorik KW - Gassensorik KW - Geführte Ultraschallwellen KW - Leckdetektion KW - Metrologie zur Wasserstoffspeicherung KW - Zerstörungsfreie Prüfung KW - Structural Health Monitoring (SHM) PY - 2022 AN - OPUS4-56683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmies, Lennart A1 - Bettge, Dirk A1 - Yarysh, Anna A1 - Sonntag, U. A1 - Botsch, B. A1 - Hemmleb, M. T1 - Using Machine Learning and Topographic SEM Imaging for Software Assisted Fractography N2 - The aim of a fractographic investigation is the evaluation of macroscopic and microscopic fracture surface characteristics and, as a result, the determination of the fracture mechanism of a component from a failure case. The basis for such evaluations of fracture characteristics comes from actual comparative mechanical testing and from the literature. A fractographic analysis can be very complex and, in any case, requires considerable experience. In the IGF project "iFrakto", software is being developed that quantitatively determines fracture characteristics and fracture mechanisms utilizing digitized expert knowledge, machine learning, and standard 2D and topographical data from SEM imaging. Topographical data are obtained from 4QBSE detector using shape-from-shading technology. In the medium term, a software tool should provide knowledge-based suggestions for the evaluation of fracture surfaces in real time during SEM work or at subsequent evaluation. As a basis for this, round robins were carried out among fractographers in order to create a knowledge base, to query the practice-relevant requirements for such tools and to carry out first practical tests. Actual results are presented and the relevance of the evaluation strategy is evaluated. T2 - Material Science and Engineering 2022 CY - Darmstadt, Germany DA - 27.9.2022 KW - Fractography KW - Machine Learning KW - Topography PY - 2022 AN - OPUS4-55938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hemmleb, M. A1 - Bettge, Dirk A1 - Schmies, Lennart A1 - Sonntag, U. A1 - Botsch, B. T1 - Integrated topographic SEM imaging for software assisted fractography N2 - The aim of a fractographic investigation is the evaluation of macroscopic and microscopic fracture surface characteristics and, as a result, the determination of the fracture mechanism of a component from a failure case. The basis for such evaluations of fracture characteristics comes from actual comparative mechanical testing and from the literature. A fractographic analysis can be very complex and, in any case, requires considerable experience. Machine learning methods enables the quantitative determination of fracture characteristics and fracture mechanisms utilizing digitized expert knowledge [1]. Although the application of SE images provides promising results, additional information is required to obtain reliable solutions. As expected, BSE and 3D information helps to improve the classification (Fig. 1). But only a fast, widely integrated, and automated topography measurement can provide the required amount of referenced surface data for the application of machine learning methods. To fulfil these requirements, topographical data are obtained from a BSE detector with four symmetric segments (4Q-BSE) using shape-from-shading technology [2]. Surface height calculation is performed live during image acquisition and provides immediate feedback in three dimensions. All available signals (SE, BSE and more if applicable) are recorded simultaneously together with the surface topography and stored in a multichannel data file. This guaranties the same geometrical reference for all data, which is required for further analysis (Fig. 2). When applying machine learning methods to topographic data together with SEM images, topographic information must be provided as depth image. Consequently, a unique height scale is required for all applied data with different magnifications. This requires a calibrated height measurement, which is ensured with the integrated 3D calibration of the topographic acquisition and a dedicated calibration sample. Thus, a large number of data sets from different fracture samples was generated and used as training data for machine learning. T2 - 16th Multinational Congress on Microscopy CY - Brno, Czech Republic DA - 04.09.2022 KW - Fractography KW - Machine Learning KW - Topography PY - 2022 AN - OPUS4-55937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Yarysh, Anna T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, U. A1 - Botsch, B. A1 - Bettge, Dirk A1 - Schmies, Lennart A1 - Yarysh, Anna A1 - Hemmleb, M. T1 - Softwaregestützte Bestimmung von Bruchmechanismen und Bruchflächenmerkmalen mittels Machine Learning und Topographie-Informationen N2 - Ziel von fraktographischen Untersuchungen ist die Auswertung von makroskopischen und mikroskopischen Bruchflächenmerkmalen und daraus resultierend die Bestimmung des Bruchmechanismus eines Bauteils aus einem Schadensfall. Die Grundlage für die Bewertung von Bruchmerkmalen stammt dabei aus zuvor durchgeführten eigenen Vergleichsversuchen und aus der Literatur. Eine fraktographische Analyse kann sehr aufwändig sein und setzt in jedem Fall erhebliches Erfahrungswissen voraus. Im IGF-Vorhaben „iFrakto“ wird Software entwickelt, die auf Basis von digitalisiertem Expertenwissen, Machine Learning und unter Zuhilfenahme von Topographie-Daten anhand von REM-Aufnahmen Bruchmerkmale und Bruchmechanismen quantitativ bestimmt, s. Abbildung. Solche Software soll mittelfristig direkt am REM oder bei der nachfolgenden Auswertung wissensbasierte Vorschläge für die Bewertung von Bruchflächen liefern. Als Grundlage hierfür wurden Ringversuche unter Fraktograph/inn/en durchgeführt, um die Wissensbasis zu schaffen, die praxisrelevanten Anforderungen an solche Software abzufragen und erste Praxistests durchzuführen. Die bisherigen Ergebnisse werden vorgestellt und die Relevanz der Auswertestrategie und unterschiedlicher Sensordaten bewertet. T2 - 56. Metallographie-Tagung CY - Saarbrücken, Germany DA - 21.9.2022 KW - Fraktographie KW - Machine Learning KW - Topographie PY - 2022 AN - OPUS4-55939 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -