TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys JF - MRS Bulletin N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543955 DO - https://doi.org/10.1557/s43577-022-00280-y VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Han, M. A1 - Chen, C. A1 - Zhao, G. A1 - Li, L. A1 - Yo, B. A1 - Huang, X. A1 - Zhu, Y. T1 - Blind lattice-parameter determination of cubic and tetragonal phases with high accuracy using a single EBSD pattern JF - Acta Crystallographia N2 - The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.4% and 0.07 ± 0.03%, respectively, for ideal simulated EBSD patterns. The accuracy of the crystal orientation determination reaches about 0.06 ± 0.03°. With careful manual band detection, the accuracy of determining lattice parameters from experimental patterns can be as good as from simulated patterns, although the results from simulated patterns are often better than expermental patterns, which are lower quality and contain uncertain systematic errors. The reasonably high accuracy is obtained primarily because the detection of the diffracting-plane traces and zone axes is relatively accurate. The results here demonstrate that the developed procedure based on the EBSD technique presents a reliable tool for crystallographic characterization of the Bravais lattices of unknown phases. KW - EBSD KW - Bravais lattice KW - Lattice parameters KW - Kikuchi pattern PY - 2018 DO - https://doi.org/10.1107/S2053273318010963 SN - 2053-2733 VL - 74 IS - 6 SP - 630 EP - 639 PB - International Union of Crystallography AN - OPUS4-46455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, L. A1 - Darvishi Kamachali, Reza A1 - Li, Z. A1 - Zhang, Z. T1 - Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy JF - Physical Review Materials N2 - Grain boundary (GB) Segregation has a substantial effect on the microstructure evolution and properties of polycrystalline alloys. The mechanism of nanoscale segregation at the various GBs in multicomponent alloys is of great challenge to reveal and remains elusive so far. To address this issue, we studied the GB segregation in a representative equiatomic FeMnNiCoCr high-entropy alloy (HEA) aged at 450 °C. By combining transmission Kikuchi diffraction, atom probe tomography analysis and a density-based thermodynamics modeling, we uncover the nanoscale segregation behavior at a series of well-characterized GBs of different characters. No segregation occurs at coherent twin boundaries; only slight nanoscale segregation of Ni takes place at the low-angle GBs and vicinal \Sigma 29b coincidence site lattice GBs. Ni and Mn show cosegregation of high levels at the general high-angle GBs with a strong depletion in Fe, Cr, and Co. Our density-based thermodynamic model reveals that the highly negative energy of mixing Ni and Mn is the main driving force for nanoscale cosegregation to the GBs. This is further assisted by the opposite segregation of Ni and Cr atoms with a positive enthalpy of mixing. It is also found that GBs of higher interfacial energy, possessing lower atomic densities (higher disorder and free volume), show higher segregation levels. By clarifying the origins of GB segregations in the FeMnNiCoCr HEA, the current work provides fundamental ideas on nanoscale segregation at crystal defects in multicomponent alloys. KW - Thermodynamics KW - High-Entropy Alloys KW - Grain Boundary Segregation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508827 DO - https://doi.org/10.1103/PhysRevMaterials.4.053603 VL - 4 IS - 5 SP - 053603 PB - American Physical Society AN - OPUS4-50882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -