TY - JOUR A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. A1 - Marzok, Ulrich A1 - Reinsch, Stefan T1 - Hydrogen Permeation Through Glass N2 - Physical storage of gaseous hydrogen under high-pressure in glassy micro-containers such as spheres and capillaries is a promising concept for enhancing safety and the volumetric capacity of mobile hydrogen storage systems. As very low permeation through the container wall is required for storage of compressed hydrogen, development of glasses of minimal hydrogen permeability is needed. For this purpose, one has to understand better the dependence of hydrogen permeability on glass structure. The paper points out that minimizing the accessible free volume is as one strategy to minimize hydrogen permeability. Based on previously measured and comprehensive literature data, it is shown that permeation is independently controlled by ionic porosity and network modifier content. Thus, ionic porosity in modified and fully polymerized networks can be decreased equally to the lowest hydrogen permeability among the glasses under study. Applying this concept, a drop of up to 30,000 with respect to the permeation of hydrogen molecules through silica glass is attainable. KW - Ionic porosity KW - hydrogen storage KW - Glass KW - Permeability KW - Solubility KW - Diffusivity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513927 DO - https://doi.org/10.3389/fmats.2019.00342 VL - 6 SP - Article 342 AN - OPUS4-51392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Silver - alkali borate glass pastes N2 - Network modifier ions can decisively influence properties and structure of low melting alkali-zinc-borate glasses and thus cause complex effects on the liquid phase sintering of silver-glass metallization pastes. This effect was studied for X2O-ZnO-B2O3 (X = Li, Na, Rb) glasses for silver-glass metallization pastes. Viscosity and the glass transition temperature, Tg, were measured with rotational viscometry and dilatometry. Dried model pastes with 30 vol% LZB, NZB or RZB glass were prepared for sintering studies by means of heating microscopy measuring the silhouette area shrinkage of uniaxially pressed powder compacts during heating at 5 K/min. For comparison, the silhouette area shrinkage of pure glass and silver powder compacts were determined. Glass-silver wetting was investigated during heating of bulk glass cylinders placed on silver substrates. Glass RZB turned out to have the lowest viscosity among the glasses under study. Its glass transformation temperature, Tg, was found at 444 °C and it caused the lowest sintering onset for its glass and paste powder compacts. Slightly increased values of Tg were found for NZB and LZB (468 °C and 466 °C, respectively) and a slightly retarded sintering was found for both paste powder compacts. These results indicate that liquid phase sintering of silver-glass pastes under air atmosphere is mainly influenced by glass viscosity. T2 - GLASS MEETING 2020 CY - Online meeting DA - 07.12.2020 KW - Silver-glass metallization paste KW - Sintering KW - Alkali ions KW - Viscosity KW - Silver precipitates PY - 2020 AN - OPUS4-52871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and rotor blades of wind turbines are basically made of fiber reinforced plastics (FRP). Their failure heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in-situ non-destructive testing techniques. Here, we report on in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics (CFRP) due to inter fiber failure. An in-house designed compact-tensile testing machine with a load range up to 15 kN was integrated into the beam path. Since conventional radiographs do not reveal sufficient contrast to distinct cracks due to inter fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging technique (DEI) is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. In the laboratory, scanning X-ray refraction topography of CFRP has been applied long before but it comes along with several disadvantages: the long total measuring time hampers real time (in-situ) measurements and the required small beam size hinders end-to-end imaging. The introduced technique overcomes both drawbacks. Imaging and tensile test rig are run unsynchronized at the greatest possible frame rate (0.7 s-1 at 28.8 µm pixel size) and smallest possible strain rate (5.5∙10-4 s-1). For 0°/90° non-crimped fabrics (ncf) the first inter fiber cracks occurred at 380 MPa (strain 0.7 %). Prior to failure at about 760 MPa (strain 2.0 %) we observe the evolution of a nearly equidistant 1 mm grid of cracks running across the entire sample in the fully damaged state before total failure. T2 - 41st Risø International Symposium on Materials Science - Materials and Design for Next Generation Wind Turbine Blades CY - Online meeting DA - 07.09.2020 KW - X-ray refraction KW - Diffraction Enhanced Imaging KW - Carbon Fiber Reinforced Plastics KW - In situ tensile test KW - Crack evolution PY - 2020 AN - OPUS4-51223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schilling, Markus T1 - Environmental Stress Cracking (ESC) and Slow Crack Growth (SCG) of PE-HD induced by external fluids N2 - High-density polyethylene (PE-HD) is widely used as a packaging material. Typical applications are pipes and containers for storage and transport of dangerous goods. For these applications, the understanding of the craze-crack damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) is of importance. Since these mechanisms are considered to be the major causes of failure, their understanding is essential for inspection and release of those materials. A well-established test method for the assessment of these damage mechanisms is the full-notch creep test (FNCT). It is used in this study for a detailed investigation of crack propagation phenomena in PE-HD container materials under the influence of different fluids such as air, water and aqueous detergent solutions (Arkopal N 100) as well as biodiesel and diesel. Based on the results of the FNCT, a classification scheme of different fluids is proposed, which allows for an assignment of the respective damage mechanisms. Hereby, it is differentiated between (i) inert, (ii) purely surface-active and (iii) additionally sorptive, bulk-active fluids with respect to SCG. If the test fluid changes the intrinsic properties (at the surface or in the bulk), the damage mechanism is addressed to ESC behavior. In FNCT investigations, stress, temperature and specimen geometry were varied systematically. In addition to the time to failure as common measure for the resistance of a PE-HD type against crack propagation, specimen elongation was considered in detail. Several imaging techniques were applied for fracture surface analysis of specimens tested in FNCT to gain novel information on SCG and ESC behavior. From height profiles obtained by laser scanning microscopy (LSM) and information on surface structures from scanning electron microscopy (SEM), indicators for the differentiation of the crack propagation mechanisms could be derived. Based on the LSM data, an algorithm for the distinction between ductile shear deformation and brittle crack growth as dominating failure mechanism was developed. Imaging techniques were also used for determination of crack propagation rates, which were related to time-resolved FNCT elongation data. From the time-resolved determination of crack lengths of partly damaged FNCT specimens, an increasing length of craze zone with a progressively propagating crack was revealed for the first time. This relation of crack and craze zones was specified by fracture mechanical considerations. N2 - Polyethylen hoher Dichte (PE-HD) wird als Werkstoff für Rohre und Behälter für den Transport und zur Lagerung von Gefahrgütern verwendet. Für die Beurteilung und technische Freigabe dieser Materialien ist das Verständnis der beiden Schädigungsmechanismen „langsames Risswachstum“ (engl.: „slow crack growth“, SCG) und „umgebungsbedingter Spannungsriss“ (engl.: „environmental stress cracking“, ESC) essentiell. Eine etablierte Prüfmethode zur Bewertung dieser Schädigungsmechanismen ist der Full-Notch Creep Test (FNCT), der in dieser Arbeit zur systematischen Untersuchung des Risswachstums in PE-HD Behältermaterialien unter Einwirkung von Luft, Wasser und wässrigen Netzmittellösungen (Arkopal N 100) sowie Biodiesel und Diesel verwendet wird. Aus den Ergebnissen des FNCT wird ein Klassifikationsschema für Fluide vorgeschlagen, welches ebenfalls eine Zuordnung zu den Schädigungsmechanismen erlaubt. Hierbei wird in (i) inerte, (ii) rein oberflächen-aktive und (iii) zusätzliche sorptive, volumen-aktive Fluide hinsichtlich des langsamen Risswachstums (SCG) unterschieden. Wenn ein Fluid lokal die intrinsischen Materialeigenschaften des Polymers verändert, wird der Schädigungsmechanismus dem umgebungsbedingten Spannungsriss (ESC) zugeordnet. Bei den FNCT-Untersuchungen wurden die mechanische Spannung, die Temperatur und die Prüfkörpergeometrie systematisch variiert. Zusätzlich zur Standzeit wurde die Prüfkörperdehnung zeitabhängig erfasst. Aus einer erweiterten Bruchflächenanalyse konnten neuartige Informationen über SCG und ESC erhalten werden. Hierzu wurden verschiedene Bildgebungsverfahren verwendet. Insbesondere wurden mit Laserscanningmikroskopie (LSM) Höhenprofile und mit Rasterelektronenmikroskopie (REM) Oberflächeninformationen zur Charakterisierung der Rissfortschrittsmechanismen erhalten. Auf Basis der LSM wurde unter Zuhilfenahme von Höhenprofildaten ein Algorithmus zur Unterscheidung zwischen duktiler Scherverformung und sprödem Risswachstum als dominierende Schädigungsmechanismen entwickelt. Die aus den bildgebenden Verfahren ermittelten Rissfortschrittsraten konnten mit den Daten der während des FNCT erfassten Dehnung der Prüfkörper in Beziehung gesetzt werden. Weiterhin wurde mithilfe von zeitaufgelösten Risslängendaten erstmals eine direkte Korrelation der Risslänge zu vorgeschädigten, fibrillierten Bereichen (Crazes) im PE-HD Prüfkörper während des FNCT nachgewiesen. Demnach vergrößert sich die Craze-Länge linear mit zunehmender Risslänge. Dieser Zusammenhang zwischen Riss- und Craze-Längen wurde auf mathematisch, bruchmechanischer Grundlage bestätigt. KW - High-density polyethylene (PE-HD) KW - Full-Notch Creep Test (FNCT) KW - Slow crack growth (SCG) KW - Environmental Stress Cracking (ESC) KW - Biodiesel KW - Diesel KW - Crack propagation analysis KW - Fracture Surface Analysis KW - Test Improvement KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:tuda-tuprints-115443 DO - https://doi.org/10.25534/tuprints-00011544 SP - 1 EP - 212 CY - Darmstadt AN - OPUS4-50941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. T1 - Refined Calibration Model for Improving the Orientation Precision of Electron Backscatter Diffraction Maps N2 - For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center. KW - Scanning electron microscopy KW - Electron backscatter diffraction KW - Kikuchi diffraction KW - Projection center KW - Orientation precision PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509342 DO - https://doi.org/10.3390/ma13122816 VL - 13 IS - 12 SP - 2816 PB - MDPI AN - OPUS4-50934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, F. A1 - Ren, H. A1 - Zheng, M. A1 - Shao, X. A1 - Dai, T. A1 - Wu, Y. A1 - Tian, L. A1 - Liu, Y. A1 - Liu, B. A1 - Günster, Jens A1 - Liu, Y. A1 - Liu, Y. T1 - Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects N2 - Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as “Smart” materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect. KW - Three-dimensional Bone tissue engineering KW - Endothelial progenitor cell KW - Bone marrow-derived mesenchymal stem cell KW - Bioactive glass scaffold PY - 2020 DO - https://doi.org/10.1016/j.jmbbm.2019.103532 SN - 1751-6161 VL - 103 SP - 103532 EP - 103532 PB - Elsevier Ltd. AN - OPUS4-50491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Localized repairs for wind turbine rotor blades N2 - The effect of localized repairs on the structural integrity and thus the lifespan of wind turbine rotor blade shells is examined. T2 - SAMPE Symposium 2020 CY - Kassel, Germany DA - 17.02.2020 KW - GFRP KW - Wind turbine blade shells KW - Scarf joint repairs KW - Sandwich PY - 2020 AN - OPUS4-50480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taketa, I. A1 - Kalinka, Gerhard A1 - Gorbatikh, L. A1 - Lomov, S. A1 - Verpoest, I. T1 - Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices N2 - The longitudinal and transverse strength of three unidirectional thermoplastic prepreg systems: carbon fiber/polypropylene (CF/PP), polyamide 6 (CF/PA6), and polyphenylene sulfide (CF/PPS) are studied and analytical formulas are proposed for the estimation of matrix and fiber/matrix interface properties from composites properties. Since the matrices are semi-crystalline thermoplastics, the influence of cooling rate on the strength is statistically evaluated. While the 0° tensile strength is found to be independent of the cooling rate, the 90° tensile strength is strongly influenced by the matrix type and cooling rate. The matrix modulus increases as the cooling rate is decreased; the degree of crystallinity also increases. The matrix residual stress, interfacial shear strength, and mode II interlaminar fracture toughness are also found to depend on the cooling rate, with the trends different for different matrices. KW - Matrix residual stress KW - Thermoplastic prepreg KW - Unidirectional composites KW - Cooling rate KW - Interfacial strength PY - 2020 DO - https://doi.org/10.1080/09243046.2019.1651083 SN - 0924-3046 SN - 1568-5519 N1 - Die originale japanische Version des Artikels erschien in: Journal of the Japan Society for Composite Materials, Jg. 44, Nr. 4 (2018), S. 123-128. - The original Japanese version of the article was published in: Journal of the Japan Society for Composite Materials, vol. 44, no. 4 (2018), pp. 123-128. VL - 29 IS - 1 SP - 101 EP - 113 PB - Taylor & Francis CY - London AN - OPUS4-45433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506060 DO - https://doi.org/10.1016/j.msea.2020.139255 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Manzoni, Anna Maria A1 - Glatzel, U. ED - Buschow, K.H.J. ED - Flemings, M.C. ED - Kramer, E.J. ED - Veyssière, P. ED - Cahn, R.W. ED - Ilschner, B. ED - Mahajan, S. T1 - High-Entropy Alloys: Balancing Strength and Ductility at Room Temperature N2 - A new race for high performance structural materials has started since the discovery of high entropy alloys at the beginning of the 21st century. The possible combination of several elements in an, until then, unknown composition space opened the ground for discovering new materials. Solid solution strengthening remains the most prominent mechanisms that is active in this family of materials, but it is supported by all other strengthening mechanism on the path to better and better performing materials. Chemical, thermal and mechanical approaches are combined to optimize these alloys. Optimum performances can be reached by using a high number of different strengthening mechanisms, induced both by composition and processing. The most prominent with composition induced mechanism is precipitation hardening, and on the processing side it is cold working such as cold-rolling, torsion or extrusion. The contribution uses tensile test data at room temperature solely for comparison – high temperature and cryogenic data are omitted because it would lead beyond the scope of this manuscript. KW - High entropy alloys KW - Compositionally complex alloys PY - 2020 DO - https://doi.org/10.1016/B978-0-12-803581-8.11774-6 PB - Elsevier Inc. AN - OPUS4-50575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Andrieux, J. A1 - Michels, M. A1 - Lackner, F. A1 - Chiriac, R. A1 - Hagner, M. A1 - Di Michiel, M. A1 - Meyer, Christian A1 - Toche, F. ED - Foley, C. P. T1 - Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires N2 - Accelerator magnets that can reach magnetic fields well beyond the Nb-Ti performance limits are presently being built and developed, using Nb3Sn superconductors. This technology requires reaction heat treatment (RHT) of the magnet coils, during which Nb3Sn is formed from its ductile precursor materials (a “wind and react” approach). The Nb3Sn microstructure and microchemistry are strongly influenced by the conductor fabrication route, and by the Phase changes during RHT. By combining in situ differential scanning calorimetry, high Energy synchrotron x-ray diffraction, and micro-tomography experiments, we have acquired a unique data set that describes in great detail the phase and microstructure changes that take place during the processing of restacked rod process (RRP), powder-in-tube (PIT), and internal tin (IT) Nb3Sn wires. At temperatures below 450 ° the phase evolutions in the three wire types are similar, with respectively solid state interdiffusion of Cu and Sn, Cu6Sn5 formation, and Cu6Sn5 peritectic transformation. Distinct differences in phase evolutions in the wires are found when temperatures exceed 450 °C. The volume changes of the conductor during RHT are a difficulty in the production of Nb3Sn accelerator magnets. We compare the wire diameter changes measured in situ by dilatometry with the phase and void volume evolution of the three types of Nb3Sn wire. Unlike the Nb3Sn wire length changes, the wire diameter evolution is characteristic for each Nb3Sn wire type. The strongest volume increase, of about 5%, is observed in the RRP wire, where the main diameter increase occurs above 600 °C upon Nb3Sn formation. KW - Nb3Sn KW - Microstructure KW - Phase transformations KW - Volume changes KW - X-ray diffraction KW - Differential scanning calorimetry KW - Synchrotron micro-tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505128 DO - https://doi.org/10.1088/1361-6668/ab627c VL - 33 IS - 3 SP - 034004 PB - IOP Publishing CY - Bristol (UK) AN - OPUS4-50512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Reimann, T. A1 - Giovannelli, F. A1 - Rabe, Torsten T1 - Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite N2 - Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high‐temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure‐assisted sintering (PAS) are a possible future way for a cost‐effective mass‐production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape‐cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab‐direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry‐pressed, pressureless‐sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry‐pressed reference (30 MPa) from the same powder. KW - Hot pressing KW - Texture KW - Thermoelectric properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515973 DO - https://doi.org/https://doi.org/10.1111/jace.17541 SN - 0002-7820 VL - 104 IS - 2 SP - 917 EP - 927 PB - Wiley Periodicals LLC AN - OPUS4-51597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Honrao, S. J. A1 - Rizzardi, Q. A1 - Maaß, Robert A1 - Trinkle, D. R. A1 - Hennig, R. G. T1 - Split-vacancy defect complexes of oxygen in hcp and fcc cobalt N2 - One of the most ubiquitous and important defects in solids is oxygen. Knowledge about the solubility and diffusivity of oxygen in materials is crucial to understand a number of important technological processes, such as oxidation, corrosion, and heterogeneous catalysis. Density-functional theory calculations of the thermodynamics and kinetics of oxygen in cobalt show that oxygen diffusing into the two close-packed phases, namely α (hcp) and β (fcc), strongly interacts with vacancies.We observe the formation of oxygen split-vacancy centers (V-Oi-V) in both phases, and we show that this defect complex exhibits a similar migration energy barrier to the vacancy and oxygen interstitials. In contrast to the vacancy and oxygen interstitials, the oxygen split-vacancy centers exhibit an anisotropic strain field that couples to applied stress, making it possible to observe them through an internal friction experiment on quenched cobalt. KW - Split-vacancy defect complexes PY - 2020 DO - https://doi.org/10.1103/PhysRevMaterials.4.103608 VL - 4 IS - 10 SP - 103608-1 EP - 103608-9 PB - American Physical Society AN - OPUS4-51582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Richter, Tim A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Mäde, L. T1 - Detection and prediction of high temperature fatigue crack growth around notches in polycrystalline nickel base alloy N2 - Im Rahmen eines Vorhabens wurden Methoden zur Reduktion des Versuchsaufwandes bei der Modellerstellung für LCF-Lebensdauervorhersage untersucht. Einige dieser Methoden sind hier kurz vorgestellt. N2 - Methods for reducing the experimental effort necessary for the development of LCF life time prediction models were investigated. Some of these methods are briefly presented here. T2 - 4th International Symposium for Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - LCF KW - Mechanistic Modelling KW - Fatigue KW - Data Fusion PY - 2020 AN - OPUS4-50904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. T1 - About the reliability of EBSD measurements: Data enhancement N2 - An extensive set of information about the diffracting volume is carried by EBSD patterns: the crystal lattice, the reciprocal lattice, the crystal structure, the crystal symmetry, the mean periodic number of the diffracting phase, the source point from where it has been projected (projection centre), the crystal orientation, the sample topography (local tilt), the (preparation) quality of defect density of the crystal, and possible pattern overlaps. Some of this information is used regularly in conventional EBSD analyses software while others are still waiting for a more widespread application. Despite the wealth of information available, the accuracy and precision of the data that are presently extracted from conventional EBSD patterns are often well below the actual physical limits. Using a selection of example applications, we will demonstrate the gain in angular resolution possible using relatively low-resolution patterns of approximately 20k pixels in combination with pattern matching (PM) approaches. In this way, fine details in a microstructure can be revealed which would otherwise be hidden in the orientation noise. KW - EBSD KW - Orientation precision KW - Disorientation KW - Grain boundary KW - Phase transformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521618 DO - https://doi.org/10.1088/1757-899X/891/1/012018 VL - 891 SP - 012018 PB - IOP Science AN - OPUS4-52161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Trappe, Volker A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Non-destructive characterization methods for polymer matrix composites N2 - The mechanical behavior of fiber reinforced composites with polymer matrix is governed by several mechanisms operating at different length scales. In this contribution we describe first non-destructive techniques which are adequate for the characterization of the fiber-matrix interphase at a microscopic level. In a second step we describe on a mesoscopic level the influence of manufacturing related elements on the mechanical properties of rotor blades for wind turbines. We concentrate on thermography, laminography and ultrasound in connection with mechanical testing systems. Finally we present methods for monitoring rotor blades by using embedded optical fibers. T2 - Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ, Brasilien CY - Online meeting DA - 26.11.2020 KW - Polymer matrix composites PY - 2020 AN - OPUS4-52043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orlov, Nikolai A1 - Kiseleva, A. K. A1 - Milkini, P. A. A1 - Evdokimov, P. V. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Potentialities of Reaction Sintering in the Fabrication of High-Strength Macroporous Ceramics Based on Substituted Calcium Phosphate N2 - Calcium alkali metal (potassium and sodium) double and triple phosphates have been synthesized in different ways. Was for the first time used reaction sintering to produce ceramics based on calcium alkali metal mixed phosphates and investigated the densification behavior of mixed phosphate-based multiphase materials during sintering by this method. Was presented the microstructure of polished surfaces of sintered samples differing in phase composition and determined the density of ceramics prepared using reaction mixtures differing in composition. The effect of reaction sintering on the porosity of the ceramics has been assessed. Using stereolithographic printing and reaction sintering, was produced macroporous mixed Calcium phosphate-based ceramic implants. Their compressive strength has been determined to be 0.78 ± 0.21 MPa for two-phase samples and 1.02 ± 0.13 MPa for three-phase samples. KW - Reaction Sintering KW - Bio Ceramics PY - 2020 DO - https://doi.org/10.1134/s0020168520120146 VL - 56 IS - 12 SP - 1298 EP - 1306 PB - Pleiades Publishing LTD AN - OPUS4-52004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - da Silva, A. A1 - McEniry, E. A1 - Gault, B. A1 - Neugebauer, J. A1 - Raabe, D. T1 - Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries N2 - Segregation to grain boundaries affects their cohesion, corrosion, and embrittlement and plays a critical role in heterogeneous nucleation. In order to quantitatively study segregation and low-dimensional phase separation at grain boundaries, here, we apply a density-based phase-field model. The current model describes the grain-boundary thermodynamic properties based on available bulk thermodynamic data, while the grain-boundary-density profile is obtained using atomistic simulations. To benchmark the performance of the model, Mn grain-boundary segregation in the Fe–Mn system is studied. 3D simulation results are compared against atom probe tomography measurements conducted for three alloy compositions. We show that a continuous increase in the alloy composition results in a discontinuous jump in the segregation isotherm. The jump corresponds to a spinodal Phase separation at grain boundary. For alloy compositions above the jump, we reveal an interfacial transient spinodal phase separation. The transient spinodal phenomenon opens opportunities for knowledge-based microstructure design through the chemical manipulation of grain boundaries. The proposed density-based model provides a powerful tool to study thermodynamics and kinetics of segregation and phase changes at grain boundaries. KW - Grain Boundary Spinodal KW - Densty-based Thermodynamics KW - Microstrucrue Design PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519497 DO - https://doi.org/10.1038/s41524-020-00456-7 VL - 6 IS - 1 SP - 191 PB - Nature AN - OPUS4-51949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -