TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 JF - Journal of Electroceramics N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 DO - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Giovanelli, F. A1 - Rabe, Torsten T1 - Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite JF - Journal of Applied Physics N2 - Calcium cobaltite (Ca3Co4O9) is considered as one of the most promising thermoelectric p-type oxides for energy harvesting applications at temperatures above 500 °C. It is challenging to sinter this material as its stability is limited to 920 °C. To facilitate a practicable and scalable production of Ca3Co4O9 for multilayer generators, a systematic study of the influence of powder calcination, Bi-doping, reaction sintering, and pressure-assisted sintering (PAS) on microstructure and thermoelectric properties is presented. Batches of doped, undoped, calcined, and not calcined powders were prepared, tape-cast, and sintered with and without uniaxial pressure at 900 °C. The resulting phase compositions, microstructures and thermoelectric properties were analysed. It is shown that the beneficial effect of Bi-doping observed on pressureless sintered samples cannot be transferred to PAS. Liquid phase formation induces distortions and abnormal grain growth. Although the Seebeck coefficient is increased to 139 µV/K by Bi-doping, the power factor is low due to poor electrical conductivity. The best results were achieved by PAS of calcined powder. The dense and textured microstructure exhibits a high power factor of 326 µW/mK² at 800 °C but adversely high thermal conductivity in the relevant direction. The figure of merit is higher than 0.08 at 700 °C. KW - Ceramics KW - Calcium cobaltite KW - Thermoelectric properties KW - Calcination KW - Pressure-assisted sintering PY - 2019 DO - https://doi.org/10.1063/1.5107476 SN - 0021-8979 VL - 126 IS - 7 SP - 075102-1 EP - 075102-11 PB - AIP Publishing CY - Melville AN - OPUS4-48708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Delorme, F. A1 - Chen, C. A1 - Bektas, M. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of Reaction-Sintering and Calcination Conditions on Thermoelectric Properties of Sm-doped Calcium Manganate CaMnO3 JF - Journal of Ceramic Science and Technology N2 - A wide range of solid-state synthesis routes for calcium manganate is reported in the literature, but there is no systematic study about the influence of the solid-state synthesis conditions on thermoelectric properties. Therefore, this study examined the influence of calcination temperature and calcination cycles on the Seebeck coefficient, electrical conductivity, and thermal conductivity. Higher calcination temperatures and repeated calcination cycles minimized the driving force for sintering of the synthesized powder, leading to smaller shrinkage and lower densities of the sintered specimens. As the electrical conductivity increased monotonously with increasing density, a higher energy input during calcination caused deterioration of electrical conductivity. Phase composition and Seebeck coefficient of sintered calcium manganate were not influenced by the calcination procedure. The highest thermoelectric properties with the highest power factors and figures of merit were obtained by means of reaction-sintering of uncalcined powder. KW - Thermoelectric oxides KW - Calcination KW - Solid-state-synthesis KW - Power factor KW - Reaction-sintering PY - 2018 DO - https://doi.org/10.4416/JCST2018-00017 SN - 2190-9385 VL - 9 IS - 3 SP - 289 EP - 300 PB - Göller Verlag AN - OPUS4-46224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -