TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Creep-fatigue of P92 in service-like tests with combined stress- and strain-controlled dwell times N2 - Complex service-like relaxation- and creep-fatigue tests with strain- and stress-controlled dwells and fatigue cycle durations of approx. 2200 s were performed exemplarily on a grade P92 steel at 620 ◦C in this study. The results indicate deviations in the prevailing creep mechanisms of long-term relaxation and creep dwells, affecting subsequent dwells, load shifts, and the macroscopic softening behavior quite differently. In addition, fracture surfaces and longitudinal metallographic sections reveal intergranular crack growth for complex loading with stress-controlled dwells, whereas complex strain-controlled tests enhance oxidation and transgranular crack propagation. These findings substantiate the limited transferability of relaxation-fatigue to creep-fatigue conditions. KW - Tempered martensite-ferritic steel KW - P92 KW - Dwell periods KW - Creep-fatigue interaction KW - Stress relaxation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564239 DO - https://doi.org/10.1016/j.ijfatigue.2022.107381 SN - 0142-1123 VL - 168 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-56423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, Thomas A1 - Skrotzki, Birgit T1 - Semantic Representation of Low‐Cycle‐Fatigue Testing Data Using a Fatigue Test Ontology and ckan.kupferdigital Data Management System N2 - Addressing a strategy for publishing open and digital research data, this article presents the approach for streamlining and automating the process of storage and conversion of research data to those of semantically queryable data on the web. As the use case for demonstrating and evaluating the digitalization process, the primary datasets from low‐cycle‐fatigue testing of several copper alloys are prepared. The fatigue test ontology (FTO) and ckan.kupferdigital data management system are developed as two main prerequisites of the data digitalization process. FTO has been modeled according to the content of the fatigue testing standard and by reusing the basic formal ontology, industrial ontology foundry core ontology, and material science and engineering ontology. The ckan.kupferdigital data management system is also constructed in such a way that enables the users to prepare the protocols for mapping the datasets into the knowledge graph and automatically convert all the primary datasets to those machine‐readable data which are represented by the web ontology language. The retrievability of the converted digital data is also evaluated by querying the example competency questions, confirming that ckan.kupferdigital enables publishing open data that can be highly reused in the semantic web. KW - Accessible KW - CKAN KW - Interoperable KW - Digitalizations KW - Ontologies KW - Reusable data KW - Fatigue testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604991 UR - https://onlinelibrary.wiley.com/doi/10.1002/adem.202400675 DO - https://doi.org/10.1002/adem.202400675 SN - 1527-2648 SP - 1 EP - 11 PB - Wiley AN - OPUS4-60499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -