TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Crack identification by data fusion in fatigued flat specimens with through-holes - A feasibility study N2 - A numerical pre-study has shown that cracks in a flat sample featuring a drilled hole can be classified into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Fatigue 2018 CY - Poitiers, France DA - 27.05.2018 KW - LCF KW - Crack KW - Data Fusion PY - 2018 AN - OPUS4-45936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uckert, Danilo A1 - Kühn, Hans-Joachim A1 - Matzak, Kathrin A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhaltens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zusammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Dusseldorf, Germany DA - 30.11.2018 KW - Kriechen KW - LCF KW - Lebensdauer KW - Ni-Resist KW - Schädigung KW - TMF PY - 2018 SN - 978-3-00-061694-5 SP - 29 EP - 38 CY - Düsseldorf AN - OPUS4-46919 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Schmitz, Sebastian ED - Moninger, G. T1 - Risserkennung an Bohrlochproben: Numerische Voruntersuchung für eine neuartige Methode zur Rissformerkennung T1 - Crack Detection on Borehole Specimens: Numerical pre-examination for a novel crack shape detection method N2 - Es konnte anhand einer numerischen Voruntersuchung gezeigt werden, dass anhand der kombinierten Auswertung der im Versuch verwendeten Sensorik eine Einteilung der unter Ermüdung in Bohrlochproben auftretenden Rissformen in verschiedene Hauptkategorien (Eckriss, Oberflächenriss, Durchgangsriss) möglich ist. N2 - When fatigued specimens with a hole are to be investigated regarding crack growth, it may be the case that the shape of the crack can’t be identified with sufficient certainty. If marking the fracture surface e.g. using beach marks is not possible, a method is required that nevertheless allows for the determination of the crack shape in order to calculate the corresponding fracture mechanics parameters. This paper describes a numerical pre-study for a method that allows for the classification of cracks in a sample featuring a drill hole into one of three crack shape classes based on the combined evaluation of various types of test data. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - Crack KW - LCF KW - Data Fusion KW - Risse KW - Rissform KW - Datenfusion PY - 2018 VL - 2018 SP - 249 EP - 254 AN - OPUS4-46976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Portella, Pedro Dolabella T1 - Fraktographische online-Datenbank: Beispiele Kunststoffe N2 - Im Rahmen der DGM/DVM AG Fraktographie wird an der BAM eine fraktographische online-Datenbank aufgebaut. Während von metallischen Werkstoffen viele Beispiele vorliegen, die auch gut verstanden sind, sind die Brüche von Kunststoffen bislang weniger prominent vertreten. Eine teils ungeklärte Frage ist, in welcher Form sich an Kunststoffen klassische Schwingbrüche nachweisen lassen, wie sie von metallischen Werkstoffen bekannt sind. Der Vortrag zeigt einige Beispiele im Detail und stellt diese zur Diskussion. T2 - VDI Expertenkreis Kunststoffe CY - Wuppertal, Germany DA - 08.11.2018 KW - Schwingbrüche KW - Kunststoffe KW - Fraktographie PY - 2018 AN - OPUS4-47388 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Portella, Pedro Dolabella A1 - Buggisch, Enrico A1 - Schneider, Hannes T1 - Fraktographische online-Datenbank: Erste Ergebnisse aus Schwingversuchen an Sinterstählen N2 - Im Rahmen der Erstellung einer fraktographischen online-Datenbank an der BAM wurden systematisch Schwingversuche an einem Sinterstahl vorgenommen, dessen Sinterdichte variiert wurde. Die erzeugten Bruchflächen wurden analysiert, mit der Literatur verglichen und Datensätze in die Datenbank eingefügt. T2 - VDI Expertenkreis Sinterstähle CY - Berlin, Germany DA - 12.04.2018 KW - Fraktographie PY - 2018 AN - OPUS4-47389 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Häusler, I. A1 - Schwarze, C. A1 - Umer Bilal, M. A1 - Hetaba, W. A1 - Darvishi Kamachali, Reza T1 - Age hardening of a high purity Al‐4Cu‐1Li‐0.25Mn alloy: Microstructural investigation and phase‐field simulation N2 - Research results considering the "Age Hardening of a High Purity Al‐4Cu‐1Li‐0.25Mn Alloy: Microstructural Investigation and Phase‐Field Simulation" were presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Age hardening KW - Aluminium KW - Phase-field simulation KW - Precipitates KW - Transmission electron microscopy PY - 2018 AN - OPUS4-45286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Rockenhäuser, Christian A1 - Saxena, A. A1 - Skrotzki, Birgit A1 - Umer Bilal, M. A1 - Ramirez, Daniela Valencia A1 - Schwarze, C. A1 - Häusler, I. T1 - Chemo-mechanical Coupling Effect During Precipitation in AlLi and AlLiCu systems N2 - The chemo-mechanical coupling effect during precipitation in AlLi and AlLiCu systems is presented and effects of chemo-mechanical coupling on materials with different microstructures is discussed. The results of the simulations are then compared to electron-microscopical investigations. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 17.12.2018 KW - Al-Li alloys KW - Phase field simulation KW - Precipitation KW - Inverse ostwald ripening KW - Transmission electron microscopy PY - 2018 AN - OPUS4-46961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas T1 - Concrete under cyclic loading a continuum damage model and a temporal multiscale approach N2 - The durability of concrete structures and its performance over the lifetime is strongly influenced by many interacting phenomena such as e.g. mechanical degradation due to fatigue loading, loss of prestress, degradation due to chemical reactions or creep and shrinkage. Failure due to cyclic loading is generally not instantaneous, but characterized by a steady damage accumulation. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. A key limitation is that the models often do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. The objective of this paper is the presentation of numerical methods for the simulation of concrete under fatigue loading using a temporal multiscale method. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different time integration schemes. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Cycle jump KW - Fatigue damage KW - Concrete PY - 2018 AN - OPUS4-45696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Unger, Jörg F. T1 - A novel computational method for efficient evaluation of structural fatigue N2 - The methods of computational damage mechanics are well-established for the description of degradation of materials under monotone loading. An extension to structural damage induced by cyclic loading is however significantly limited. This is due to enormous computational costs required to resolve each load cycle by conventional temporal incremental integration schemes while a typical fatigue loading history comprises between thousands and millions of cycles. Despite the permanent increase of computational resources and algorithmic performance, a successful approach is rather based on the development of novel multiscale in time integration schemes. A Fourier transformation-based temporal integration (FTTI) is represented, which takes advantage of temporal scale separation incorporated into the cycle jump method. The response fields are approximated by a Fourier series whose coefficients undergo the evolution on a long-time scale. This is correlated with the evolution of the history variables, including damage, by means of the adaptive cycle jump method of various orders. The necessary extrapolation rates are obtained from the underlying solution of a short-time scale problem, which results from the oscillatory boundary condition and fulfills the global equilibrium of the Fourier coefficients. In this way, a remarkable speedup is achieved because the number of cycles to be fully integrated dramatically decreases. The key idea behind the FTTI method is that the global in space equilibrium problem is linear since it is decoupled from the evolution equations. The latter are solved in the quadrature points under response fields prescribed throughout the whole load cycle. Consequently, integration of a single load cycle is much more efficient than the conventional single scale integration where the global equilibrium iteration and the local iteration of the evolution equations are coupled. This results in an additional speedup of the FTTI method. The performance of the FTTI technique is demonstrated for two different constitutive behaviors: a viscoplastic model with a damage variable governed by the local equivalent viscoplastic strain; a quasi-brittle response where the damage variable is driven by a non-local equivalent strain. The latter is implicitly introduced as proposed by Peerlings. Both, the explicit and implicit extrapolation schemes are validated. The FTTI solutions agree very well with the reference cycle-by -cycle solutions, while significantly reducing the computational costs. The adaptive determination of the jump length can properly recognize the particular responses throughout the fatigue loading history (stationary fatigue, acceleration of fatigue damage when approaching failure) as well as stress redistribution phenomena. T2 - International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue Congress Congress Congress 2018 CY - Poitiers, France DA - 27.05.2018 KW - Fatigue KW - Accelerated integration scheme PY - 2018 AN - OPUS4-46975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor importance. Because of the growing interest in maxing out the capacities of concrete, its fatigue failure under compression has become an issue. A variety of interacting phenomena such as e.g. loss of prestress, degradation due to chemical reactions or creep and shrinkage influence the fatigue resistance. Failure due to cyclic loads is generally not instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable numerical model to predict the performance of concrete over its lifetime is required, which accurately captures order effects and full three-dimensional stress states. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. However, a key limitation of those models is that they generally do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. This is due to the computational effort necessary to explicitly resolve every cycle which exceeds the currently available computational resources. The limitation can only be overcome by the application of multiscale methods in time. The objective of the paper is the development of numerical methods for the simulation of concrete under fatigue loading using temporal multiscale methods. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from static tests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. Finally, the developed methods will be validated and compared to experimental data. T2 - Conference on Computational Modelling of concrete and concrete structures (EURO_C 2018') CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Fatigue KW - Concrete KW - Damage PY - 2018 AN - OPUS4-48001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Unger, Jörg F. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - A continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from statictests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. A multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. T2 - Computational Modelling of concrete and concrete Structures Euro-C, March 1st 2018 CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Continnum damage model KW - Simulation of concrete KW - Under cyclic loading PY - 2018 UR - https://euro-c.tuwien.ac.at/home/ AN - OPUS4-48399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Kühn, Hans-Joachim A1 - Matzak, Kathrin A1 - Rehmer, Birgit T1 - Ermüdungsverhalten des warmfesten austenitischen Gusseisens EN-GJSA-XNiSiCr35-5-2 bei hoher Temperatur N2 - Die warmfeste austenitische Gusseisenlegierung EN-GJSA-XNiSiCr35-5-2 (häufig auch als Ni-Resist D-5S bezeichnet) wurde hinsichtlich ihres mechanischen Verhal-tens bei hoher Temperatur charakterisiert. Dazu wurden (isotherme) niederzyklische (LCF-) und (nicht-isotherme) thermomechanische Ermüdungsversuche (TMF) zwischen Raumtemperatur und 900 °C durchgeführt. Diese Ergebnisse dienten (zu-sammen mit weiteren Versuchsdaten) der Kalibrierung werkstoffmechanischer Modelle. Bei den höchsten Prüftemperaturen wurde Schädigung in Form von Kriechen beobachtet und metallographisch dokumentiert. T2 - 41. Vortragsveranstaltung Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Dusseldorf, Germany DA - 30.11.2018 KW - Ni-Resist KW - LCF KW - TMF KW - Kriechen KW - Lebensdauer KW - Schädigung PY - 2018 AN - OPUS4-46851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Schmitz, Sebastian T1 - Risserkennung an Bohrlochproben N2 - Es wird eine neu entwickelte Methode zur Thermographiebasierten Rissmessung vorgestellt. Darüber hinaus wird eine numerische Vorarbeit präsentiert, die zeigt, dass anhand der gemeisamen Auswertung der Versuchsdaten aus unterschiedlicher Sensorik die Möglichkeit besteht, die unter Ermüdungsbelastung in Bohrlochproben auftretenden Risse in Geometriekategorien zu unterteilen. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - LCF KW - Crack KW - Data Fusion KW - Thermographie PY - 2018 AN - OPUS4-46977 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Nikonov, A. Y. A1 - Österle, Werner T1 - Molecular dynamics modeling of the sliding performance of an amorphous silica nano-layer - The impact of chosen interatomic potentials N2 - The sliding behavior of an amorphous silica sample between two rigid surfaces is in the focus of the present paper. Molecular Dynamics using a classical Tersoff’s potential and a recently developed ReaxFF potential was applied for simulating sliding within a thin film corresponding to a tribofilm formed from silica nanoparticles. The simulations were performed at different temperatures corresponding to moderate and severe tribological stressing conditions. Simulations with both potentials revealed the need of considering different temperatures in order to obtain a sound interpretation of experimental findings. The results show the striking differences between the two potentials not only in terms of magnitude of the resistance stress (about one order of magnitude) but also in terms of friction mechanisms. The expected smooth sliding regime under high temperature conditions was predicted by both simulations, although with Tersoff’s potential smooth sliding was obtained only at the highest temperature. On the other hand, at room temperature Tersoff-style calculations demonstrate stick-slip behavior, which corresponds qualitatively with our experimental findings. Nevertheless, comparison with a macroscopic coefficient of friction is not possible because simulated resistance stresses do not depend on the applied normal pressure. KW - Molecular dynamics KW - Thin tribofilm KW - Resistance stress KW - Sliding simulation KW - Amorphous silica PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449366 DO - https://doi.org/10.3390/lubricants6020043 SN - 2075-4442 VL - 6 IS - 2 SP - 43, 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-44936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - In-situ testing of corrosion and corrosion fatigue behavior of stainless steels in geothermal environment N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2 ). T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.5 VL - 103 SP - 13 EP - 20 AN - OPUS4-50364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Construction of an adiabatic calorimeter for investigation of high tempertarue salt - based phase change material N2 - The commercial usage of latent thermal energy storages primarily depends on the development of a suitable phase change material (PCM). For industrial high temperature applications above 400 °C multicomponent chloride eutectics are promising and therefore discussed seriously. The profound thermodynamic investigation of such eutectics requires a much greater amount of specimen material than conventional calorimeter can handle. Therefore, a special adiabatic calorimeter was developed and designed. With a specimen mass of > 100 g the typical thermodynamic measurements with a commercial calorimeter can be extended by cycle stability measurements, which are often decisive for practical application of PCM. Furthermore, by implementing corrosion specimens inside the calorimeter high temperature corrosion experiments according to ISO 21608 can be performed inside the calorimeter. Adiabatic measuring conditions can be provided by using two separate heating systems. Therefore, the outer “protective system” follows the temperature curve of the inner “measuring system” minimizing the temperature difference between the heating systems and simultaneously preventing heat losses from the measuring systems. T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.6 VL - 103 SP - 21 EP - 28 AN - OPUS4-50363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel T1 - The influence of the aggressive environments on the Inconel 686 coating in high-temperature corrosion experiments N2 - This work presents the microstructure and chemical composition of oxide scales created on Ni – base coating after corrosion experiments in aggressive gases and ashes. The Inconel 686 coating applied on the low carbon steel 13CrMo4-5 was performed by a CO2 laser cladding process. The experiments were carried out in oxidizing gas atmospheres containing O2, COx, SOx. The second Variation of corrosion experiments were performed in a reducing atmosphere with ashes containing elements such as: Na, Cl, Ca, Si, C, Fe, Al etc. After 240 h and 1.000 h corrosion experiments the oxide scales on the substrate and overlay were created in both cases. The sulfur compounds were found on the top of the coating surface (EPMA) and also higher contents of silica compounds were revealed on specimens covered by ashes during the experiments. The microstructure and chemical composition of the clad and scales were investigated by means of a light microscope and an electron microscope (SEM)equipped with an EDS detector. T2 - 50. Kraftwerkstechnisches Kolloquium CY - Dresden, Germany DA - 23.10.2018 KW - Nickel based coatings KW - Inconel 686 KW - High temperature corrosion PY - 2018 SP - 599 AN - OPUS4-46590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Petrzak, P. A1 - Kowalski, K. A1 - Rozmus-Gornikowska, M. A1 - Debowska, A. A1 - Jedrusik, M. T1 - Annealing effect on microstructure and chemical composition of Inconel 625 alloy N2 - Our research focused on Inconel 625 weld overlays on 16Mo3 steel boiler pipes. The Investigation focused on the characterization of changes in the microstructure and chemical composition after annealing. The annealing was performed for ten hours at temperatures from 600 to 1000°C. Changes in the microstructure were observed with a scanning and transmission electron microscope (SEM and TEM). The investigation was supplemented by hardness measurements. KW - Inconel 625 KW - Microsegregation KW - Annealing PY - 2018 DO - https://doi.org/10.7494/mafe.2018.44.2.73 SN - 1230-2325 SN - 0860-6307 SN - 2300-8377 VL - 44 IS - 2 SP - 73 EP - 80 PB - AGH University of Science and Technology Press CY - Cracow AN - OPUS4-49659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Local Corrosion of Martensitic Stainless Steels during Exposure to Saline Aquifer Water and CO2 Environment N2 - Carbon Capture and Storage (CCS) is well acknowledged to mitigate climate change. Therefore, pipe Steels suitable for CCS technology require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe Steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products analysed on pits are FeCO3 and FeOOH. The carbon content does not show significant influence on the pitting behaviour. Generally, higher chromium Content results in better corrosion resistance. Although X35CrMo17-1 and X5CrNiCuNb16-4 show low surface corrosion rates, their resistance against local corrosion in CCS environment is not significantly better compared to the much less costly Steels X20Cr13 and X46Cr13. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2018 DO - https://doi.org/10.18178/ijcea.2018.9.1.694 SN - 2010-0221 VL - 9 SP - 26 EP - 31 PB - International Association of Computer Science and Information Technology Press CY - Singapore AN - OPUS4-46627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Degradation of AISI 630 exposed to CO2-saturated saline aquifer at ambient pressure and 100 bar N2 - In general high alloyed steels are suitable as pipe steels for carbon capture and storage technology (CCS), because they provide sufficient resistance against the corrosive environment of CO2-saturated saline aquifer which serves as potential CCS-site in Germany. High alloyed martensitic steel AISI 630 has been proven to be sufficient resistant in corrosive environments, e.g. regarding heat, pressure, salinity of the aquifer, CO2-partial pressure), but reveals a distinct corrosion pattern in CCS environment. Therefore coupons of AISI 630 heat treated using usual protocols were kept at T=60 °C and ambient pressure as well as p=100 bar up to 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. AISI 630 precipitates a discontinuous ellipsoidal corrosion layer after being exposed for more than 4000 hours. Best corrosion resistance in the CO2-saturated synthetic aquifer environment phase is achieved via normalizing prior to exposure. In water saturated supercritical CO2 tempering at medium temperatures after hardening gives lowest corrosion rates. Corrosion fatigue via push-pull tests with a series of 30 specimens was evaluated at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). The endurance limit of AISI 630 is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa). KW - Corrosion Fatigue KW - High Cycle Fatigue KW - Steel KW - Ccs KW - Co2-Storage PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503783 DO - https://doi.org/10.22587/jasr.2018.14.6.3 SN - 1819-544X SN - 1816-157X SP - 11 EP - 17 PB - INSInet Publications CY - Faisalabad AN - OPUS4-50378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, Agnieszka A1 - Kranzmann, Axel A1 - Dymek, Stanislaw T1 - The microstructure characterization of the oxide scale created on Inconel 686 clad N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - EUROCORR 2018 CY - Crocow, Poland DA - 09.09.2018 KW - Laser cladding KW - Inconel 686 coating KW - High-temperature corrosion KW - Aggressive gases PY - 2018 AN - OPUS4-47393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Peetz, Christoph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Impurities in CO2 Streams with Transport Pipeline Steel N2 - A main goal of CLUSTER CCS project at BAM was to study the corrosion behaviour of pipeline steel with dense phase carbon dioxide containing impurities. Depending on the kind of impurities specific corrosion mechanisms and corrosion rates were determined. T2 - CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2018 AN - OPUS4-47016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, Christiane T1 - Early oxidation and sulfidation of high temperature model alloys: An EDXRD in situ study N2 - The fundamental impact of sulfur and water on corrosion rates and potential failure of the exposed material is well known. However, the access to the related corrosion mechanism causing material degradation is often a problem to solve. This study investigates the effect of SO2 and water vapor in the initial stages of corrosion of an Fe9Cr0.5Mn model alloy at 650 °C in situ. The analysis was carried out under laboratory conditions using energy-dispersive X-ray diffraction (EDXRD). T2 - Dechema EFC Workshop CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Sulfidation KW - Model alloy KW - Oxidation PY - 2018 AN - OPUS4-46134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Menneken, Martina A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Early stages of corrosion in hot, aggressive environments N2 - We investigated the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650 °C. Two separate experiments were run, one with 99.5%-Ar + 0.5%-SO2 and one with 69.5%-Ar + 0.5%-SO2 with 30%-H2O atmosphere. During the experiment the scale growth was observed in-situ, using energy dispersive X-ray diffraction (EDXRD). Our results confirm an increased speed of oxygen transport into the material, with the addition of water, while the transport of sulfur appears to be less affected. T2 - Sektionstreffen der DMG Sektionen "Angewandte Mineralogie in Umwelt & Technik" und "Chemie, Physik und Kristallographie der Minerale" CY - Bad Windsheim, Germany DA - 28.02.2018 KW - Corrosion KW - In-situ KW - EDXRD PY - 2018 AN - OPUS4-45369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kober, E. A1 - Ricking, M. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detection of polymers in treated waste water using TED-GC-MS N2 - The presence of large quantities of plastic waste and its fragmentation in various environmental compartments are an important subject of current research. In the environment, (photo ) oxidation processes and mechanical abrasion lead to the formation of microplastics. However, until now, there are no established quality assurance concepts for the analysis of microplastic (<5 mm) in environmental compartments, including sampling, processing and analysis. The aim of the present work is the development of suitable examination methods and protocols (sampling, sample preparation and detection) to qualify and quantify microplastic in urbane water management systems. At first a fractional filtration system for sampling and the analytical tool, the so-called TED-GC-MS (thermal desorption gas chromatography mass spectrometry) were developed. The TED-GC-MS method is a two-step analytical procedure which consists of a thermal extraction where the sample is annealed and characteristic decomposition products of the polymers are collected on a solid phase. Afterwards these products are analysed using GC-MS. The developed fractional filtration for sampling and the TED-GC-MS for detection were used for quantitative analysis to screen the waste water influent and effluent of a Berlin waste water treatment plant for the most relevant polymers, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA). The results of the study revealed that the polymeres PE, PS and PP were detected in the effluent, and PE and PS were find in the raw waste water of the sewage treatment plant in Ruhleben, Berlin. Differences in polymer types and amounts were detected at different sampling dates and within different sieve fractions. Much higher amounts of polymers were observed in the raw waste water. The peak areas of the decomposition products, used for quantification of the polymers, were adjusted using so-called response factors since the TED-GC-MS method is more sensitive for PP and PS than for PE. It has been shown that PE is the most dominant polymer in the samples. Comparing the masses of polymers in the effluent and in the raw sewage, a removal of 99 % of the polymers in the water treatment plant can be assumed. These results are consistent with the literature where removal rates between 98-99 % were described. T2 - SETAC Europe CY - Rom, Italy DA - 13.05.2018 KW - Microplastics KW - Thermogravimetry KW - Waste water KW - Chromatography PY - 2018 AN - OPUS4-44968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.G. A1 - Ricking, M. A1 - Kober, E. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detektion von Polymeren im Abwasser eines Klärwerks mittels TED-GC_MS N2 - In den Umweltmedien Wasser, Boden und Luft wird Mikroplastik (MP) gefunden. Mögliche Eintragspfade, besonders Einträge über den Klarlauf kommunaler Klärwerke, sind unklar. Dazu wurde das Klärwerk Ruhleben in Berlin an jeweils vier Tagen im Sommer- und Winterbetrieb beprobt. Es wurde jeweils 1 m3 Klarlauf fraktioniert filtriert (500, 100 und 50 µm Siebe). Weiterhin wurde Rohabwasser exemplarisch untersucht. Als Analyse-methoden wurden die TED-GC-MS und die FTIR Mikroskopie verwendet. Bei der TED-GC-MS wird die Probe zunächst thermisch extrahiert, bevor die charakteristischen Zersetzungsgase mittels einer GC-Säule getrennt und im MS detektiert werden [1,2]. Es ist hier erstmals gelungen, nicht nur das MP zu identi-fizieren, sondern auch eine Massenbilanz zu erstellen und so eine quantitative Auswertung vorzunehmen. Es wurde PE, PS ganzjährig und PP im Sommer gefunden. Das Klärwerk Ruhleben hat einen Rückhalt an MP von 99%. T2 - Wasser 2018 CY - Papenburg, Germany DA - 07.05.2018 KW - Mikroplastik KW - Abwasser KW - TED-GC-MS KW - Bilanzierung PY - 2018 AN - OPUS4-44889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Braun, Ulrike A1 - Becker, Roland A1 - Maiwald, Michael A1 - Paul, Andrea T1 - Mikroplastikanalyse: Nahinfrarotspektroskopie und chemometrische Auswertung N2 - Für die Erfassung der Verbreitung von Mikroplastik (MP) in der Umwelt ist die zeit- und kostenaufwendige Analysestrategie und der damit verbundene geringe Probendurchsatz eine limitierende Größe. Eine große Zahl verschiedener Studien dokumentriet das Auftreten von MP über den gesamten Globus. Meist sind die Studien aufgrund des großen analytischen Aufwands auf exemplarische, stichpunktartige Untersuchungen kleiner Umweltaliquoten und zahlenmäßig kleiner Probenumfänge begrenzt. Um die Verbreitung, die Eintragspfade und den Verbleib von MP in der Umwelt besser zu verstehen und effektive Vermeidungsstrategien abzuleiten, ist es jedoch notwendig, analytisch mehr Proben erfassen zu können. Bildgebende mikro-spektroskopische Methoden wie das Raman- und FTIR-Imaging ermöglichen eine zeitaufwendige, umfassende Charakterisierung kleiner Umweltaliquoten. Neben der Partikelanzahl sind zusätzlich Informationen zu Partikelgröße, Größenverteilung und Oberflächenmorphologie zugänglich. Chemische und thermische Extraktionsverfahren sind bereits deutlich schneller und können diese Informationen durch eine Massenbilanz vervollständigen. Die analysierbare Probenmenge ist jedoch auf Milligramm Mengen beschränkt. Wir schlagen daher vor, die Analyse von Proben auf MP durch ein vorangestelltes Screening mit der Nahinfrarot-Spektroskopie (NIRS) zur komplementieren. In diesem wird bereits eine erste Einschätzung über die Präsenz von MP in einer Probe gefällt und dadurch die wertvolle Messzeit anderer Methoden effizienter genutzt. NIR zur Analyse von Polymeren wird seit langem eingesetzt, jedoch bisher lediglich im Rahmen einer Studie zur Mikroplastikuntersuchung mittels Hyperspektraler Bildgebung beschrieben. Der NIR Spektralbereich findet sich zwischen dem sichtbaren Licht und dem mittleren Infrarot (MIR). MIR Spektren sind durch klar definierte Banden charakterisiert, welche mehrheitlich von den Grundschwingungen der Moleküle stammen. Die höheren Energien im nahen Infrarot regen hingegen Kombinations- und Oberschwingungen der Streck und Biegeschwingungen an. Die resultierenden Absorptionsbanden sind oft breit und relativ unspezifisch. Erst mit Hilfe einer computergestützten Datenauswertung lassen sich aus diesen Spektren nützliche Informationen gewinnen. Dies erklärt die steigende Popularität der NIR-Spektroskopie in der jüngeren Vergangenheit mit einem Schwerpunkt als prozessanalytische Methode. NIR Spektrometer für das industrielle Prozessmonitoring zeichnen sich durch eine kompakte und robuste Konstruktionsweise aus. Die verfügbaren faseroptischen Reflexionssonden eignen sich gut um pulverförmige Proben zu untersuchen. Der räumlich erfassbare Messbereich kann durch die Sondengeometrie variiert werden. Sind die untersuchten Partikel im Verhältnis zur abgetasteten Fläche klein, wird als spektrale Information die Summe der Absorption aller Partikel im Sichtfeld erfasst. Die Methode ist deshalb nicht für Detailuntersuchungen von MP geeignet, erlaubt es jedoch innerhalb weniger Minuten eine Einschätzung über das Vorkommen von Mikroplastik in einer Probe zu treffen. Exemplarisch wurden für diese Untersuchungen vier der am weitesten verbreiteten Kunststoffe Polyethylen (PE), Polyethylenterephthalat (PET), Polypropylen (PP) und Polystyrol (PS) gewählt. Aus den additivfreien Polymeren wurden nach einer Kryo-vermahlung und anschließender Siebung (< 125 µm) Modellproben generiert. Die Polymere wurden dafür zu einem Massenanteil von 1 % mit einem Standardboden (LUFA2.3, gesiebt < 125 µm) vermischt. Die Gesamtmenge von 1 g je Probe wurde in Aluminiumbehältern präpariert und 8 Messungen an unterschiedlichen, zufällig gewählten Positionen vorgenommen. Die erhaltenen Spektren wurden zur Kalibrierung chemometrischer Modelle genutzt. In einem hierarchischen Ansatz wurde anhand der NIR-Spektren eine Klassifizierung vorgenommen: 1. Bestimmung ob eine Probe MP enthält (Ja/Nein). 2. Identifikation der Polymere in der Probe. Eine aussagekräftige Klassifizierung beruht auf einer Vorbehandlung der Spektren. Hierdurch werden die Unterschiede zwischen den einzelnen Polymerbanden hervorgehoben. Die Eignung der so erstellten Modelle wurde anhand eines Referenzmaterials und am Beispiel von Realproben erfolgreich getestet. Dabei zeigte sich, dass nicht nur in den erstellten Polymer-Bodenmischungen, sondern auch in den Rückständen von fermentiertem Bioabfall und in Filterrückständen einer Waschmaschine, MP richtig erkannt wurde. Weiterhin zeigten Tests mit Mikroplastik-freien Bodenproben unterschiedlicher Herkunft, dass keine falsch-positive Resultate erzeugt wurden. Alle vier untersuchten Polymere, d.h. PE, PET, PS und PP mit einem Massenanteil von 1 % in einer Bodenmatrix werden auch bei einer gemischten Polymerzusammensetzung mit der NIR-Spektroskopie erkannt. Der kombinierte Einsatz von NIRS und Chemometrie ermöglicht die Entscheidung über ein potenzielles Vorkommen sowie die Zuordnung des Materials der enthaltenen Polymerpartikel für eine Massefraktion ≥ 1 % in einer (trockenen) Probenmenge von 1 g innerhalb von 10–15 min. Der zeitaufwendige Schritt der Methode liegt hier in der Erstellung geeigneter chemometrischer Modelle sowie deren Validierung. Wesentliche Voraussetzung ist dabei, dass bei der Kalibrierung die Varianz der zu erwartenden Partikel und der Matrix realistisch abgebildet wird. T2 - GDCh Jahrestagung der Wasserchemischen Gesellschaft CY - Papenburg, Ems, Germany DA - 07.05.2018 KW - Mikroplastik KW - Nahinfrarotspektroskopie KW - Chemometrie KW - Boden PY - 2018 AN - OPUS4-44887 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Wolfram A1 - Ramirez Caro, Alejandra A1 - Sojref, Regine A1 - Mota Gassó, Berta ED - Greim, M. ED - Kusterle, W. ED - Teubert, O. T1 - Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction N2 - In order to observe the effect of the aggregate phases between 2 mm and 16 mm without overlap with rheological effects induced by the cement hy-dration and without interactions with a threshold fine sand particle size that affects both, paste and aggregates, rheological experiments were conducted on a limestone filler based paste mixed with aggregates up to 16 mm. Vari-ous aggregate fractions were blended and mixed with the replacement paste in different volumetric ratios. The dry aggregates’ flow coefficients were determined and compared to yield stress and plastic viscosity values at different aggregate volume fractions. The results indicated that the flow coefficient is not a suitable parameter to predict the performance of the aggregates in the paste. It was shown that the yield stress of pastes is largely determined by the blend of different aggregate fractions, while the plastic viscosity to large extend depends upon the coars-est aggregate fraction. Based on the results, ideal aggregate composition ranges for minimised yield stress are presented. For the plastic viscosity no such grading curves to achieve minimum values could be found, but high viscosity curves are identified. KW - Rheology KW - Flow Coefficient KW - Particle Size Distribution KW - Volume Fraction KW - Cement KW - Concrete KW - Reference Material KW - Limestone Filler PY - 2018 SN - 978-3-7469-1878-5 SP - 96 EP - 108 PB - tredition GmbH CY - Hamburg AN - OPUS4-44434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 μL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2 ), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10845, 1 EP - 11 PB - Omnipress CY - Houston AN - OPUS4-44917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. Furthermore, to reveal the possible protective performance of FeCO3, the pipeline steels were pre-carbonated and then tested in the same condition as freshly polished specimens. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 AN - OPUS4-46279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO 2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-44922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Portella, Pedro Dolabella T1 - Structured heating in active thermography by using laser arrays N2 - Lock-in- and flash thermography are standard methods in active thermography. They are widely used in industrial inspection tasks e.g. for the detection of delaminations, cracks or pores. The requirements for the light sources of these two methods are substantially different. While lock-in thermography requires sources that can be easily and above all fast modulated, the use of flash thermography requires sources that release a very high optical energy in the very short time. By introducing high-power vertical cavity surface emitting lasers (VCSELs) arrays to the field of thermography a source is now available that covers these two areas. VCSEL arrays combine the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination range of flash lamps or LEDs and can thus potentially replace all conventional light sources of thermography. However, the main advantage of this laser technology lies in the independent control of individual array areas. It is therefore possible to heat not only in terms of time, but also in terms of space. This new degree of freedom allows the development of new NDT methods. We demonstrate this approach using a test problem that can only be solved to a limited extent in active thermography, namely the detection of very thin, hidden defects in metallic materials that are aligned vertically to the surface. For this purpose, we generate destructively interfering thermal wave fields, which make it possible to detect defects within the range of the thermal wave field high sensitivity. This is done without pre-treatment of the surface and without using a reference area to depths beyond the usual thermographic rule of thumb. T2 - ConaEnd&Iev 2018 CY - Sao Paulo, Brazil DA - 27.08.2018 KW - VCSEL KW - Active thermography KW - Laser KW - Structured heating KW - Subsurface defects PY - 2018 AN - OPUS4-45851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - This work examined the droplet corrosion of CO2 pipeline steels caused by impurities in CO2 supercritical/dense phase at 278 K, simulating the underground transport condition. The wetting properties of carbon steels (X52 and X70) as well as martensitic steel UNS S41500, and superaustenite UNS N08031 were studied by contact angle measurement, revealing reactive wetting behavior of carbon steels. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal coupons in supercritical/dense phase condition, forming the corrosion product instantly during pumping process. Due to the active wetting behavior, the carbon steels suffered from heavily attack, while negligible corrosion product was observed in cases of martensitic steel UNS S41500 and superaustenite UNS 08031 coupons. Condensation experiments that were carried out on fresh polished coupons in CO2 with 1200 ppmv H2O showed that the formation and aggregation of droplet is dependent on the presence of impurities. Without SO2 and O2, the same concentration of H2O did not cause observable corrosion process after a week of exposure. With 220 ppmv SO2 and 6700 ppmv O2 even low water concentration (5-30 ppmv) still resulted in heterogeneous nucleation and subsequent growth of droplets, leading to corrosive process on carbon steel surface albeit to a lesser extent. T2 - CORROSION 2018 CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 SP - Paper 10845, 1 EP - 11 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-44798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S. A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE 2018 CY - Phoenix, Arizona, USA DA - 15.04.2018 KW - Droplet corrosion KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel PY - 2018 AN - OPUS4-44767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Knauer, S A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Jaeger, P A1 - Schulz, S T1 - Impact of acid condensation on wetting and corrosion behavior of CO2 transport-pipeline steel N2 - Es ist allgemein akzeptiert, das Korrosion in CO2-Transport-Pipelines vernach¬lässigbar ist, solange der Wassergehalt des CO2-Stroms deutlich unter der maximal löslichen Menge liegt. Bisher gibt es keinen allgemeinen Konsens darüber, welcher maximale Wassergehalt in zu transportierendem CO2 zugelassen werden sollte. Bei einem Druck von 100 bar und im Temperaturbereich von 277 K bis 298 K beträgt die Löslichkeit von Wasser in CO2 ca. 1.900 bis 3.200 ppmv, aber die Korrosionsrate von Stählen steigt schon ab einem Wassergehalt von 500 ppmv deutlich an. Bei Anwesenheit von Begleitstoffen wie SO2, NO2 und O2, können sich HNO3, H2SO3 und H2SO4 bilden. Menge und Zusammensetzung von kondensierter Säure sind von der Gaszusammensetzung abhängig, und der Korrosionsmechanismus und die Korrosionsform sind vom Kondensationsverhalten abhängig. T2 - CLUSTER Symposium: CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-46907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nofz, Marianne T1 - High temperature coatings (Book review) N2 - All in all, practicing professionals as well as researchers can read this book with pleasure and great benefit. It presents a comprehensive collection of data and practical examples manifested in about 100 graphs, 80 schemes of processes and devices, a manifold of images showing the microstructure of alloys or details of components and several phase diagrams. Tables containing data on commercially available coatings, alloys, compositions of corrosive salts, function of constituents of coatings add further important pieces of information. Thus, this book is a valuable source of information for anyone engaged in work with or research on high temperature coatings. KW - Coating KW - High temperature PY - 2018 DO - https://doi.org/10.1002/maco.201870104 SN - 0947-5117 VL - 69 IS - 10 SP - 1490 EP - 1490 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -