TY - JOUR A1 - Jacobson, D. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. T1 - Extending Density Phase-Field Simulations to Dynamic Regimes N2 - Density-based phase-field (DPF) methods have emerged as a technique for simulating grain boundary thermodynamics and kinetics. Compared to the classical phase-field, DPF gives a more physical description of the grain boundary structure and chemistry, bridging CALPHAD databases and atomistic simulations, with broad applications to grain boundary and segregation engineering. Notwithstanding their notable progress, further advancements are still warranted in DPF methods. Chief among these are the requirements to resolve its performance constraints associated with solving fourth-order partial differential equations (PDEs) and to enable the DPF methods for simulating moving grain boundaries. Presented in this work is a means by which the aforementioned problems are addressed by expressing the density field of a DPF simulation in terms of a traditional order parameter field. A generic DPF free energy functional is derived and used to carry out a series of equilibrium and dynamic simulations of grain boundaries in order to generate trends such as grain boundary width vs. gradient energy coefficient, grain boundary velocity vs. applied driving force, and spherical grain radius vs. time. These trends are compared with analytical solutions and the behavior of physical grain boundaries in order to ascertain the validity of the coupled DPF model. All tested quantities were found to agree with established theories of grain boundary behavior. In addition, the resulting simulations allow for DPF simulations to be carried out by existing phase-field solvers. KW - CALPHAD KW - Phase-field modelling KW - Phase-Field Simulations PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581365 VL - 13 SP - 1 EP - 16 AN - OPUS4-58136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Grain Boundary Segregation Design using CALPHAD-integrated Phase-Field Modelling N2 - A main source of current challenges in materials science and engineering is the ever-increasing complexity in materials chemistry and processing resulting in complex microstructures, making the assessment of process-microstructure-property-performance relations difficult, even unmanageable. Here the computational materials science is facing the same situation. In this talk, I share a viewpoint that the complexities in chemistry, processing and microstructures can be circumscribed by integrating existing knowledges of bulk thermodynamics and kinetics to the unknown thermodynamics and kinetics of microstructure elements. To this end, I discuss several successful examples on grain boundary segregation engineering how this scientific advance can be conducted. A roadmap is proposed, beginning to form on generalizing the concept of phase diagrams. T2 - ICAMS Advance Discussions: Advanced models for microstructure evolution – process-microstructure-property relationships CY - Bochum, Germany DA - 26.10.2022 KW - Microstructure Design KW - CALPHAD KW - Phase-Field Simulations KW - Machine Learning KW - Phase Diagrams PY - 2022 AN - OPUS4-56348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -