TY - JOUR A1 - Zocca, Andrea A1 - Fateri, M. A1 - Al-Sabbagh, Dominik A1 - Günster, Jens T1 - Investigation of the sintering and melting of JSC-2A lunar regolith simulant N2 - Future lunar exploration can benefit greatly from In-Situ Resource Utilization. Accordingly, the in-Situ Resource Utilization approach highlights the need for detailed analysis of lunar regolith. In this study, JSC-2A Simulant was studied regarding its sintering and melting behaviour using Differential Thermal Analysis under ambient and inert conditions. The minerals at the crystalline peaks were determined using X-Ray Diffraction analysis. Moreover, melting droplet shape and wetting behaviour of pressed regolith samples of different particle size distributions were studied by Hot Stage Microscopy technique. Hot Stage Microscopy experiments were performed at different heating rates under ambient conditions. Bloating effects within the solidified samples were then qualitatively examined by X-ray tomography. Lastly, the optimization of processing strategies for the Additive Manufacturing of lunar regolith is discussed. KW - Lunar regolith KW - Sintering KW - Melting KW - Hot stage microscopy PY - 2020 U6 - https://doi.org/10.1016/j.ceramint.2020.02.212 VL - 46 IS - 9 SP - 14097 EP - 14104 PB - Elsevier Ltd. AN - OPUS4-50869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Roßmöller-Felz, Mattis A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - In situ observation of silver precipitation in sodium zinc borate glass-forming melts N2 - Melting of Na2CO3-ZnO-B2O3 batches containing up to 16.8 wt% AgNO3 (5 mol% Ag2O in the target glass composition) was observed in situ by means of hot stage microscopy. In all batches metallic silver precipitation took place as most of the silver nitrate was reduced to metallic silver before Ag+ ions could be dissolved in the evolving borate melts. In turn, only traces of Ag+ (<300 ppmw) were dissolved in the sodium zinc borate glass melts under study. It is assumed that the oxidation to Ag+ was limited due to poor availability of reducible oxygen in the glass melts and presence of Na2O being a stronger base than Ag2O. Thus, the precipitated metallic silver formed droplets of different sizes. The larger droplets (d > 20 µm) were already settled at the bottom of the container and remained constant in size upon dwelling for 1 h at 1050 °C of about one hour and the subsequent cooling (45 K/min) to room temperature, whereas the smaller droplets (d < 20 µm) were mobile in the borate melt due to Marangoni and Stokes motion. For the latter droplets, coalescence was observed in situ. A growth of larger droplets at the expense of smaller ones, i.e., Ostwald ripening was also expected but could not be studied with the used experimental equipment. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass melt KW - Silver KW - Sodium zinc borate glass KW - Hot stage microscopy KW - Precipitation PY - 2022 AN - OPUS4-55732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -