TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Yarysh, Anna T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Peetz, Christoph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Impurities in CO2 Streams with Transport Pipeline Steel N2 - A main goal of CLUSTER CCS project at BAM was to study the corrosion behaviour of pipeline steel with dense phase carbon dioxide containing impurities. Depending on the kind of impurities specific corrosion mechanisms and corrosion rates were determined. T2 - CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2018 AN - OPUS4-47016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratzig, A. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Menneken, M. A1 - Bäßler, Ralph T1 - Early Stage of Corrosion Formation on Pipeline Steel X70 Under Oxyfuel Atmosphere at Low Temperature N2 - The early stage of corrosion formation on X70 pipeline steel under oxyfuel atmosphere was investigated by applying a simulated gas mixture (CO2 containing 6700 ppmv O2, 100 ppmv NO2, 70 ppmv SO2 and 50 ppmv H2O) for 15 h at 278 K and ambient pressure. Short-term tests (6 h) revealed that the corrosion starts as local spots related to grinding marks progressing by time and moisture until a closed layer was formed. Acid droplets (pH 1.5), generated in the gas atmosphere, containing a mixture of H2SO4 and HNO3, were identified as corrosion starters. After 15 h of exposure, corrosion products were mainly X-ray amorphous and only partially crystalline. In-situ energy-dispersive X-ray diffraction (EDXRD) results showed that the crystalline fractions consist primarily of water-bearing iron sulfates. Applying Raman spectroscopy, water-bearing iron nitrates were detected as subordinated phases. Supplementary long-term tests exhibited a significant increase in the crystalline fraction and formation of additional water-bearing iron sulfates. All phases of the corrosion layer were intergrown in a nanocrystalline network. In addition, numerous globular structures have been detected above the corrosion layer, which were identified as hydrated iron sulphate and hematite. As a type of corrosion, shallow pit formation was identified, and the corrosion rate was about 0.1 mma−1. In addition to in-situ EDXRD, SEM/EDS, TEM, Raman spectroscopy and interferometry were used to chemically and microstructurally analyze the corrosion products. KW - Corrosion KW - CCUS KW - In-situ ED-XRD KW - CO2 pipeline transport KW - Oxyfuel KW - Carbon steel KW - Impurities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506303 DO - https://doi.org/10.3390/pr8040421 SN - 2227-9717 VL - 8 IS - 4 SP - 421-1 EP - 421-19 PB - MDPI CY - Basel AN - OPUS4-50630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Components in CO2 Streams with Transport Pipeline Steel X70 at High Pressure and Low Temperature N2 - Specific amounts of oxidizing and reductive impurities as well as some moisture were added to dense phase CO2 to replicate CO2 streams from sources in a CCS pipeline network. Due to the moisture content being only 50 ppmV no visible acid condensation took place. To simulate stress conditions at the inside pipeline surface due to fluid pressure (10 MPa) specimens were preloaded using a load frame. Experiments conducted at 278 K and at 313 K revealed the highest corrosion rate at lower temperature. Corrosive effect of impurities was strongest applying mixed atmosphere, containing oxidizing and reductive components, closely followed by CO2 streams with pure oxidizing character. By far, the lowest corrosion rate (10x lower) resulted from reductive atmosphere. In general, at constant temperature and pressure the CO2 stream composition strongly influences the morphology, thickness and composition of the corrosion products. Applying oxidizing or mixed impurities, iron hydroxides or oxides (e.g. goethite, hematite) occur as dominating corrosion products, capable to incorporate different amounts of sulfur. In contrast, using reductive atmosphere very thin corrosion layers with low crystallinity were developed, and phase identification by XRD was unfeasible. SEM/EDX analysis revealed the formation of Fe-O compounds, most likely attributed to the oxygen partial pressure in the system induced by CO2 (≥0.985 volume fraction) and volatile H2O. In addition to the surface covering corrosion layer, secondary phases had grown locally distributed on top of the layer. These compounds are characteristic for the applied atmosphere and vary in number, shape and chemical composition. T2 - 14th Greenhouse Gas Control Technologies Conference (GHGT-14) CY - Melbourne, Australia DA - 21.10.2018 KW - CCS KW - CO2 Corrosion KW - Pipelines PY - 2019 UR - https://ssrn.com/abstract=3365756 VL - 2019 SP - 1 EP - 15 AN - OPUS4-49711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Electrochemical behaviors of casing steel/mortar interface in CO2 saturated aquifer fluid N2 - To reveal the corrosion resistance of casing steel/mortar interface in CO2 injection condition, sandwich samples were prepared and exposed up to 20 weeks in aquifer fluid under 10 MPa and 60 °C. Cross section analysis revealed the crevice corrosion as main mechanism instead of pitting corrosion, which would be expected to happen in the extremely high Chloride concentration. Detailed analysis using EDS line scan shown the slow diffusion of Chloride, suggesting why pitting did not happen after 20 weeks. To mimic the passivated steel surface, the steel coupon was passivated in simulated pore solution having pH 13.5 for 42 days. The passivated coupon was further exposed to NGB solution for 28 days. Electrochemical characterization was performed along the exposure processes to reveal the change in impedance, indicating the corrosion resistance of steel casing/mortar interface. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - CO2 quality KW - Pipeline network KW - CCS PY - 2022 SP - 859 EP - 865 PB - European Federation of Corrosion AN - OPUS4-55622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Buggisch, E. A1 - Schiller, Bernadette Nicole A1 - Beck, M. T1 - Corrosion Study on Wellbore Materials for the CO2 Injection Process N2 - For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their crosssections, was carried out to trace the chloride intrusion and corrosion process that followed. KW - Carbon capture storage KW - CCS KW - Carbon dioxide KW - Corrosion KW - Carbon steel KW - Aquifer fluid KW - Cement KW - Casing KW - Pitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519774 DO - https://doi.org/10.3390/pr9010115 SN - 2227-9717 VL - 9 IS - 1 SP - 115 PB - MDPI CY - Basel AN - OPUS4-51977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 N2 - Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmv of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. To reveal the mechanism of droplet corrosion in dense phase CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this study, effects of surface morphology were investigated by varying surface roughness of carbon steel coupons exposed to CO2 stream containing impurities to measure the wettability by contact angle and to observe the condensation as well as possible droplet corrosion that followed. Other considered factors were: pH of the droplet, temperature, droplet volume, and exposure time. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - CCUS KW - Dense phase KW - CO2 KW - Droplet KW - Corrosion KW - Condensation KW - Carbon steel PY - 2019 SP - 13017-1 EP - 13017-13 PB - NACE International CY - Houston AN - OPUS4-47915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Jaeger, P A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels in simulated oxyfuel flue gas N2 - The research focus of this study was set on the corrosion process of condensate as droplets on the surface of carbon steels (X52, X70) martensitic steel UNS S41500, and super austenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the offshore transportation condition in a buried pipeline). The possibility of dew/droplet formation on the steel surface and wetting behavior of corresponding materials were evaluated by contact angle measurement in dense CO2 at 278 K. To observe the effect of impurities (SO2 and O2) on droplet corrosion process, exposure tests were carried out in the mixed atmosphere with a drop, 1 ‑ 10 µL in volume, of CO2 saturated ultra-pure water on steel surface. Comparable exposure tests were carried out with the same gas mixture and the same volume of water, as vapor, to observe the droplet formation and the corrosion process that follows. Effects of surface roughness on the droplet formation and its corrosion process were further studied and showed no significant role upon long time exposure. The results from droplet experiments were compared to those from the bulk electrolyte for the further recommendation on the quality control of gas stream along with the use of carbon steels as transport pipelines in CCS - Carbon Capture and Storage system. KW - CCUS, supercritical/dense phase CO2, carbon steels, martensitic steel, superaustenite steel, droplet corrosion PY - 2018 UR - http://corrosionjournal.com/doi/abs/10.5006/2927 DO - https://doi.org/10.5006/2927 SN - 0010-9312 SN - 1938-159X VL - 74 IS - 12 SP - 1406 EP - 1420 PB - NACE International CY - Houston, Texas, USA AN - OPUS4-46903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - This work examined the droplet corrosion of CO2 pipeline steels caused by impurities in CO2 supercritical/dense phase at 278 K, simulating the underground transport condition. The wetting properties of carbon steels (X52 and X70) as well as martensitic steel UNS S41500, and superaustenite UNS N08031 were studied by contact angle measurement, revealing reactive wetting behavior of carbon steels. Exposure tests with CO2 saturated water droplet on steel surface showed that the impurities (220 ppmv SO2 and 6700 ppmv O2) diffused into the droplet and then reacted with metal coupons in supercritical/dense phase condition, forming the corrosion product instantly during pumping process. Due to the active wetting behavior, the carbon steels suffered from heavily attack, while negligible corrosion product was observed in cases of martensitic steel UNS S41500 and superaustenite UNS 08031 coupons. Condensation experiments that were carried out on fresh polished coupons in CO2 with 1200 ppmv H2O showed that the formation and aggregation of droplet is dependent on the presence of impurities. Without SO2 and O2, the same concentration of H2O did not cause observable corrosion process after a week of exposure. With 220 ppmv SO2 and 6700 ppmv O2 even low water concentration (5-30 ppmv) still resulted in heterogeneous nucleation and subsequent growth of droplets, leading to corrosive process on carbon steel surface albeit to a lesser extent. T2 - CORROSION 2018 CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 SP - Paper 10845, 1 EP - 11 PB - NACE International Publications Division CY - Houston, Texas, USA AN - OPUS4-44798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 μL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2 ), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10845, 1 EP - 11 PB - Omnipress CY - Houston AN - OPUS4-44917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 SP - 1 EP - 4 PB - EFC CY - Krakau, Poland AN - OPUS4-46291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N. A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of co 2 injection pipe steels: role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Cement KW - Carbon capture KW - Corrosion and storage (CCUS) technology KW - Utilization KW - Carbon steel KW - Crevice corrosion PY - 2019 SP - Paper 200597, 1 EP - 4 PB - SOCIEMAT CY - Madrid, Spain AN - OPUS4-49109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H A1 - Fischer, S A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J A1 - Ostertag-Henning, C A1 - Lennard Wolf, J A1 - Pumpa, M A1 - Lubenau, U A1 - Knauer, S A1 - Jaeger, P A1 - Neumann, A A1 - Svensson, K A1 - Pöllmann, H A1 - Lempp, C A1 - Menezes, F A1 - Hagemann, B T1 - Towards Defining Reasonable Minimum Composition Thresholds – Impacts of Variable CO2 Stream Compositions on Transport, Injection and Storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: • corrosion of pipeline steel, • pipeline network design and related transport costs, • alteration of well bore cements, • pressure development and rock integrity, • geochemical reactions, and • petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - The 15th Greenhouse Gas Control Technologies Conference CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 PB - Elservier AN - OPUS4-52940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. Lennard A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Lempp, C. A1 - Menezes, F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – impacts of variable CO2 stream compositions on transport, injection and storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: Corrosion of pipeline steel, pipeline network design and related transport costs, alteration of well bore cements, pressure development and rock integrity, geochemical reactions, and petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 AN - OPUS4-52418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmies, Lennart A1 - Hemmleb, Matthias A1 - Bettge, Dirk T1 - Relevant input data for crack feature segmentation with deep learning on SEM imagery and topography data N2 - Fractography plays a critical role in failure analysis of engineering components and has a considerable importance for safety investigations. Usually, the interpretation of fracture surfaces is done by experts with the help of literature and experimental data, that requires a lot of experience. The use of deep learning (DL) with neural networks in failure analysis becomes more and more relevant with the rapidly developing possibilities. Especially, the modern network architectures can assist fractographers in determining various fracture features on SEM images of the fracture surfaces. The basis for the best possible evaluation is the understanding of the influence of the input data used for training deep neural networks (DNN). Therefore, this study discusses the influence of the selection of the input data used for the prediction quality of these networks in order to take this into account for future data acquisition. Specimens of various metallic materials were subjected to fatigue cracking experiment under laboratory conditions. The fractured surfaces were then imaged using various modes or detectors (such as SE, BSE and topography) in SEM, and those captured images were used to create a training data set. The relevance of the individual data for the quality of the prediction is determined by a specific combination of the different detector data. For the training, the well-established architecture of a UNet-ResNet34 with a fixed set of hyperparameters is used. It has been found in this present study that the combination of all input data significantly increases the prediction accuracy, whereby even the combination of SE and BSE data provides considerable advantages over the exclusive use of SE images. KW - Fractography KW - Machine Learning KW - Deep Learning KW - KI PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107814 VL - 156 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-58918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches N2 - This third part of the review on defects as root cause of fatigue failure addresses cavities (pores, micro-shrinkages, unmelted regions), defective microstructures and microcracks as material defects and defects due to local damage during manufacturing, service and maintenance such as dents, scratches and localized corrosion. In addition, damage due to contact fatigue and the effect of surface roughness are discussed in the context of fatigue failure. Also addressed is the competition between different kinds of defects in controlling the initiation and early growth of fatigue cracks. KW - Pores KW - Micro-shrinkages KW - Impact damage KW - Contact fatigue KW - Corrosion pits KW - Scratches PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.034 SN - 1350-6307 VL - 97 SP - 759 EP - 776 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. I: Basic aspects N2 - According to the definition of the ASM handbook [1,3], a defect is "an imperfection. that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection". The topic of the present three-part review is a discussion of defects which can cause failure in cyclically loaded structures. The features discussed comprise material defects such as non-metallic inclusions, pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches which have their origin in manufacturing, and defects such as surface damage due to scratches, impact events or contact fatigue as well as corrosion pits which arise in service. In this first part, the discussion is prefaced by an introduction to basic aspects which are essential for a deeper understanding of the characteristics and mechanisms how the defects influence fatigue crack initiation and propagation. These include the life cycle of a fatigue crack from initiation up to fracture, crack arrest, multiple crack initiation and coalescence, and the material and geometrical properties affecting these. KW - Defects KW - Fatigue crack propagation stages KW - Crack arrest KW - Multiple cracks PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.055 SN - 1350-6307 VL - 97 SP - 777 EP - 792 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -