TY - JOUR A1 - Wang, Lei A1 - Hoyt, J. J. T1 - Layering misalignment and negative temperature dependence of interfacial free energy of B2-liquid interfaces in a glass forming system N2 - From molecular dynamics simulations and the capillary fluctuation method, the solid-liquid interfacial free energy has been computed for the B2-liquid interface in the Cu-Zr system. Consistent with previous results for the FCC-liquid interface in Cu-Zr and Al-Sm but atypical of most alloys, was found to increase as the temperature is lowered. In addition, the temperature dependence was obtained for model Lennard-Jones B2-liquid alloys. In all cases the unusual temperature dependence of is correlated with an atomic structure of the interfacial region characterized by a misalignment of the number density peaks between solvents and solutes. In cases where the number density peaks are aligned, the typical temperature dependence is observed. The results are discussed in terms of the Gibbs theory of the thermodynamics of interfaces. It is proposed that the unique interfacial structure and the atypical temperature dependence of are hallmarks of an easy glass forming alloy. KW - Atomistic simulations KW - Interfacial free energy KW - Layering misalignment KW - Glass forming PY - 2021 U6 - https://doi.org/10.1016/j.actamat.2021.117259 SN - 1359-6454 VL - 219 SP - 117259 PB - Elsevier Ltd. AN - OPUS4-53650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X. A1 - Schmidt, Franziska A1 - Gurlo, A. T1 - Fabrication of polymer-derived ceramics with hierarchical porosities by freeze casting assisted by thiol-ene click chemistry and HF etching N2 - The freeze casting technique assisted with cryo thiol-ene photopolymerization is successfully employed for the fabrication of macroporous polymer-derived silicon oxycarbide with highly aligned porosity. It is demonstrated that the free radical initiated thiol-ene click reaction effectively cross-linked the vinyl-containing liquid polysiloxanes into infusible thermosets even at low temperatures. Furthermore, mixed solution- and suspension-based freeze casting is employed by adding silica nanopowders. SiOC/SiO2 foams with almost perfect cylindrical shapes are obtained, demonstrating that the presence of nano-SiO2 does not restrict the complete photoinduced cross-linking. The post-pyrolysis HF acid treatments of produced SiOC monoliths yields hierarchical porosities, with SiOC/SiO2 nanocomposites after etching demonstrating the highest specific surface area of 494 m2/g and pore sizes across the macro-, meso- and micropores ranges. The newly developed approach gives a versatile solution for the fabrication of bulk polymer-derived ceramics with controlled porosity. KW - Freeze casting KW - Preceramic polymer KW - Hierarchical porosities KW - Thiol-ene click chemistry KW - Frozen state photopolymerization PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2019.09.038 SN - 0955-2219 VL - 40 IS - 2 SP - 315 EP - 323 PB - Elsevier AN - OPUS4-49172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Zengquan A1 - Riechers, Birte A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Atomic cluster dynamics causes intermittent aging of metallic glasses N2 - In the past two decades, numerous relaxation or physical aging experiments of metallic glasses have revealed signatures of intermittent atomic-scale processes. Revealed via intensity cross-correlations from coherent scattering using X-ray photon correlation spectroscopy (XPCS), the observed abrupt changes in the time-domain of atomic motion does not fit the picture of gradual slowing down of relaxation times and their origin continues to remain unclear. Using a binary Lennard-Jones model glass subjected to microsecond-long isotherms, we show here that temporally and spatially heterogeneous atomic-cluster activity at different length-scales drive the emergence of highly non-monotonous intensity cross-correlations. The simulated XPCS experiments reveal a variety of time-dependent intensity-cross correlations that, depending on both the structural evolution and the 𝑞-space sampling, give detailed insights into the possible structural origins of intermittent aging measured with XPCS. KW - Metallic glasses KW - Aging KW - Molecular dynamics KW - XPCS PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595415 SN - 1359-6454 VL - 267 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-59541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Was, G.S. A1 - Bahn, C.-B. A1 - Busby, J. A1 - Cui, B. A1 - Farkas, D. A1 - Gussev, M. A1 - Rigen He, M. A1 - Hesterberg, J. A1 - Jiao, Z. A1 - Johnson, D. A1 - Kuang, W. A1 - McMurtrey, M. A1 - Robertson, I. A1 - Sinjlawi, A. A1 - Song, M. A1 - Stephenson, K. A1 - Sun, K. A1 - Swaminathan, Srinivasan A1 - Wang, M. A1 - West, E. T1 - How irradiation promotes intergranular stress corrosion crack initiation N2 - Irradiation assisted stress corrosion cracking (IASCC) is a form of intergranular stress corrosion cracking that occurs in irradiated austenitic alloys. It requires an irradiated microstructure along with high temperature water and stress. The process is ubiquitous in that it occurs in a wide range of austenitic alloys and water chemistries, but only when the alloy is irradiated. Despite evidence of this degradation mode that dates back to the 1960s, the mechanism by which it occurs has remained elusive. Here, using high resolution electron backscattering detection to analyze local stress-strain states, high resolution transmission electron microscopy to identify grain boundary phases at crack tips, and decoupling the roles of stress and grain boundary oxidation, we are able to unfold the complexities of the phenomenon to reveal the mechanism by which IASCC occurs. The significance of the findings impacts the mechanical integrity of core components of both current and advanced nuclear reactor designs worldwide. KW - Irradiation KW - Stress corrosion cracking KW - Grain boundaries KW - Oxidation KW - Austenitic alloys PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595748 SN - 0079-6425 VL - 143 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506829 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 U6 - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Thieme, C. A1 - Rüssel, C. T1 - Crystal growth velocities of a highly anisotropic phase obtained via surface and volume crystallization of barium–strontium–zinc silicate glasses N2 - In the past few years, a new phase, Ba0.5Sr0.5Zn2Si2O7 with negative thermal expansion has been described in the literature. Some excess of SiO2 is necessary to produce glasses from which the Ba0.5Sr0.5Zn2Si2O7 phase can be crystallized. Unfortunately, in such glasses usually surface crystallization occurs; however, the addition of nucleating agents such as trace quantities of platinum or relatively high quantities of ZrO2 is necessary to achieve bulk nucleation. These additional components also affect the crystal growth velocity, which furthermore is different for crystal growth from the surface and in the bulk. In this paper, three different chemical compositions containing different ZrO2 concentrations, where one composition additionally contains 100 ppm platinum, are studied with respect to their crystallization behaviour. Although the compositions do not differ much, the crystallization behaviour and also the Crystal growth velocities are surprisingly different. KW - Glass ceramic KW - Crystal growth velocity KW - Low expansion PY - 2020 U6 - https://doi.org/10.1007/s10853-020-04773-6 SN - 0022-2461 VL - 55 SP - 10364 EP - 10374 PB - Springer AN - OPUS4-50853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 U6 - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Marzok, Ulrich A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Hydrogen diffusivity in sodium aluminosilicate glasses N2 - Hydrogen gas diffusivity of fourteen glasses of the Na2O-Al2O3-SiO2 system are studied along the joins quartzalbite-jadeite-nepheline (Qz-Ab-Jd-Np, fully polymerized) and albite-sodium disilicate (Ab-Ds, depolymerized). Density measurements show that ionic porosity decreases from 54.4% (Qz) to 51.5% (Np) and from 52.4% (Ab) to 50.2% (Ds). Hydrogen diffusivity D follows similar trends but at another scale. D at 523 K decreases from 4×10−12 to 3×10−14m2 s−1 (Qz-Np) and from 4×10−13 to 3×10−15m2 s−1 (Ab-Ds). Charge compensating Na+ acting as a filling agent in fully polymerized network structures leads to up to one order of Magnitude higher diffusivities as depolymerized glass structures of the same SiO2 content where Na+ takes the role of a modifier ion. Temperature dependence of the diffusivity indicates that both the activation energy involved with the moving H2 molecule as well as the accessible volume in the structure contribute to this compositional trend. KW - Aluminosilicate glasses KW - Hydrogen diffusivity KW - Ionic porosity PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.119502 VL - 521 SP - 119502 PB - Elsevier B.V. AN - OPUS4-50392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. A1 - Marzok, Ulrich A1 - Reinsch, Stefan T1 - Hydrogen Permeation Through Glass N2 - Physical storage of gaseous hydrogen under high-pressure in glassy micro-containers such as spheres and capillaries is a promising concept for enhancing safety and the volumetric capacity of mobile hydrogen storage systems. As very low permeation through the container wall is required for storage of compressed hydrogen, development of glasses of minimal hydrogen permeability is needed. For this purpose, one has to understand better the dependence of hydrogen permeability on glass structure. The paper points out that minimizing the accessible free volume is as one strategy to minimize hydrogen permeability. Based on previously measured and comprehensive literature data, it is shown that permeation is independently controlled by ionic porosity and network modifier content. Thus, ionic porosity in modified and fully polymerized networks can be decreased equally to the lowest hydrogen permeability among the glasses under study. Applying this concept, a drop of up to 30,000 with respect to the permeation of hydrogen molecules through silica glass is attainable. KW - Ionic porosity KW - hydrogen storage KW - Glass KW - Permeability KW - Solubility KW - Diffusivity PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513927 VL - 6 SP - Article 342 AN - OPUS4-51392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Obaton, A.-F. A1 - Schwentenwein, M. A1 - Rübner, Katrin A1 - Günster, Jens T1 - Defect detection in additively manufactured lattices N2 - This paper investigates fast and inexpensive measurement methods for defect detection in parts produced by Additive Manufacturing (AM) with special focus on lattice parts made of ceramics. By Lithography-based Ceramic Manufacturing, parts were built both without defects and with typical defects intentionally introduced. These defects were investigated and confirmed by industrial X-ray Computed Tomography. Alternative inexpensive methods were applied afterwards on the parts such as weighing, volume determination by Archimedes method and gas permeability measurement. The results showed, that defects resulting in around 20% of change in volume and mass could be separated from parts free of defects by determination of mass or volume. Minor defects were not detectable as they were in the range of process-related fluctuations. Permeability measurement did not allow to safely identify parts with defects. The measurement methods investigated can be easily integrated in AM process chains to support quality control. KW - Additive manufacturing KW - Quality assurance KW - Defect detection KW - Lattices KW - Ceramics PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513547 VL - 3 SP - 100020 PB - Elsevier Ltd. AN - OPUS4-51354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. A1 - Nolze, Gert A1 - Hielscher, R. A1 - Koziel, T. T1 - EBSD orientation analysis based on experimental Kikuchi reference patterns N2 - Orientation determination does not necessarily require complete knowledge of the local atomic arrangement in a crystalline phase. We present a method for microstructural phase discrimination and orientation analysis of phases for which there is only limited crystallographic information available. In this method, experimental Kikuchi diffraction patterns are utilized to generate a self-consistent master reference for use in the technique of Electron Backscatter Diffraction (EBSD). The experimentally derived master data serves as an application-specific reference in EBSD pattern matching approaches. As application examples, we map the locally varying orientations in samples of icosahedral quasicrystals observed in a Ti40Zr40Ni20 alloy, and we analyse AlNiCo decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Crystal orientation KW - Pattern matching PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507611 VL - 188 SP - 376 EP - 385 PB - Elsevier Ltd. AN - OPUS4-50761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. T1 - Mapping of local lattice parameter ratios by projective Kikuchi pattern matching N2 - We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the transformation properties of points and lines in the real projective plane, we can obtain continuous estimations of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application example, we map the locally varying tetragonality in martensite grains of steel. KW - EBSD KW - Scanning electron microscopy KW - Orientation refinement PY - 2018 U6 - https://doi.org/10.1103/PhysRevMaterials.2.123803 SN - 2475-9953 VL - 2 IS - 12 SP - 123803, 1 EP - 15 PB - American Physical Society CY - College Park, MD AN - OPUS4-47296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. T1 - Refined Calibration Model for Improving the Orientation Precision of Electron Backscatter Diffraction Maps N2 - For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center. KW - Scanning electron microscopy KW - Electron backscatter diffraction KW - Kikuchi diffraction KW - Projection center KW - Orientation precision PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509342 VL - 13 IS - 12 SP - 2816 PB - MDPI AN - OPUS4-50934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10−2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 U6 - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Schulz, Wencke A1 - Sojref, Regine A1 - Kranzmann, Axel T1 - Exposition of sol-gel alumina-coated P92 steel to flue gas: Time-resolved microstructure evolution, defect tolerance, and repairing of the coating N2 - Technically relevant P92 steel (9% Cr) was coated with a micron-thick porous alumina layer prepared by sol-gel technique and treated with flue gas (60 CO2-30 H2O-2 O2-1 SO2-7 N2 (mole fraction in %)) at 650 ° to mimic an oxyfuelcombustion process. Local defects in the coating were marked using focused ion beam (FIB) technique and were inspected after exposition to hot flue gas atmosphere at 300, 800, and 1300 h, respectively. Local defects like agglomerated alumina sol particles tend to spall off from the coating uncovering the underlying dense chromia scale. Re-coating was found to restore the protection ability from oxidation when repeatedly treated with hot flue gas. Cracks and voids did not promote the local oxidation due to the formation of crystalline Mn/S/O species within and on top of the coating. The protective character of the steel-coating system is a result of (i) the fast formation of a dense chromia scale at the surface of sol-gel alumina-coated P92 steel bars in combination with (ii) the porous alumina coating acting as diffusion barrier, but also as diffusion partner in addition with (iii) fast Mn outward diffusion capturing the S species from flue gas. KW - Alumina coatings KW - Oxyfuel KW - Steel P92 KW - High temperature corrosion PY - 2018 U6 - https://doi.org/10.1002/maco.201709712 SN - 1521-4176 SN - 0947-5117 SN - 0043-2822 VL - 69 IS - 4 SP - 492 EP - 502 PB - Wiley-VCH Verlag GmbH&Co. KGaA CY - Weinheim AN - OPUS4-45300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xing, H. A1 - Jing, H. A1 - Dong, X. A1 - Wang, Lei A1 - Han, Y. A1 - Hu, R. T1 - Cellular growth during rapid directional solidification: Insights from quantitative phase field simulations N2 - In this paper, columnar cellular growth with kinetic effects including kinetic undercooling and solute trapping in rapid directional solidification of alloys was investigated by using a recent quantitative phase-field model for rapid solidification. Morphological transition and primary spacing selection with and without kinetic effects were numerically investigated. Numerical results show that doublon structure is an intermediate state in the primary spacing adjustment of cellular arrays. It was found that the inclusions of kinetic effects result in the increase of the solute in the solid phase and the solute enrichment in the interdendritic liquid channel. Moreover, predicted results indicate that the growth directions of the cellular arrays in rapid directional solidification with and without kinetic effects are independent of the Péclet number. Therefore, the kinetic effects play important roles in numerical simulations of the growth pattern selection and solute distribution during rapid solidification. Neglecting them will result in the inaccurately predicted results. KW - Rapid solidification KW - Phase-field model PY - 2022 U6 - https://doi.org/10.1016/j.mtcomm.2022.103170 VL - 30 SP - 103170 PB - Elsevier Ltd. AN - OPUS4-54571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, F. A1 - Ren, H. A1 - Zheng, M. A1 - Shao, X. A1 - Dai, T. A1 - Wu, Y. A1 - Tian, L. A1 - Liu, Y. A1 - Liu, B. A1 - Günster, Jens A1 - Liu, Y. A1 - Liu, Y. T1 - Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects N2 - Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as “Smart” materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect. KW - Three-dimensional Bone tissue engineering KW - Endothelial progenitor cell KW - Bone marrow-derived mesenchymal stem cell KW - Bioactive glass scaffold PY - 2020 U6 - https://doi.org/10.1016/j.jmbbm.2019.103532 SN - 1751-6161 VL - 103 SP - 103532 EP - 103532 PB - Elsevier Ltd. AN - OPUS4-50491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565655 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry N2 - In this work, we employed glow discharge optical emission spectrometry (GD-OES) depth profiling as a fast and semi-quantitative method to investigate the aluminum (Al) current collector degradation in commercial lithium cobalt oxide (LCO) pouch cells with no Al2O3 pretreatment. After battery aging, a heterogeneous deposit was found on the surface of the cathode. Gray hotspot areas within an extensive pale white region were formed. Consistent with energy dispersive X-ray (EDX) analysis of micro-cross sections milled via targeted focused ion beam (FIB), an Al-containing layer of approximately 3 µm can be observed using GD-OES. We attribute one main cause of this layer is the degradation of the Al current collector. The nonuniform growth of this layer was investigated by performing GD-OES depth profiling at different in-plane positions. We found that the gray area has a higher mass concentration of Al, probably in metallic form, whereas the white area was probably covered more homogeneously with Al2O3, resulting from the inhomogeneous distribution of the pitting positions on the current collector. Compared to FIB-EDX, GD-OES enables a faster and more convenient depth profile analysis, which allows the more productive characterization of lithium-ion batteries (LIBs), and consequently benefits the development of preferable battery materials. KW - GD-OES KW - depth profiles KW - Li-ion battery KW - battery aging mechanism KW - current collector corrosion PY - 2023 U6 - https://doi.org/10.1016/j.sab.2023.106681 SN - 0584-8547 VL - 205 SP - 106681 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-57383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zare Pakzad, S. A1 - Nasr Esfahani, M. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Li, T. A1 - Li, X. A1 - Yilmaz, M. A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Nanomechanical Modeling of the Bending Response of Silicon Nanowires N2 - Understanding the mechanical behavior of silicon nanowires is essential for the implementation of advanced nanoscale devices. Although bending tests are predominantly used for this purpose, their findings should be properly interpreted through modeling. Various modeling approaches tend to ignore parts of the effective parameter set involved in the rather complex bending response. This oversimplification is the main reason behind the spread of the modulus of elasticity and strength data in the literature. Addressing this challenge, a surface-based nanomechanical model is introduced in this study. The proposed model considers two important factors that have so far remained neglected despite their significance: (i) intrinsic stresses composed of the initial residual stress and surface-induced residual stress and (ii) anisotropic implementation of surface stress and elasticity. The modeling study is consolidated with molecular dynamics-based study of the native oxide surface through reactive force fields and a series of nanoscale characterization work through in situ threepoint bending test and Raman spectroscopy. The treatment of the test data through a series of models with increasing complexity demonstrates a spread of 85 GPa for the modulus of elasticity and points to the origins of ambiguity regarding silicon nanowire properties, which are some of the most commonly employed nanoscale building blocks. A similar conclusion is reached for strength with variations of up to 3 GPa estimated by the aforementioned nanomechanical models. Precise consideration of the nanowire surface state is thus critical to comprehending the mechanical behavior of silicon nanowires accurately. Overall, this study highlights the need for a multiscale theoretical framework to fully understand the size-dependent mechanical behavior of silicon nanowires, with fortifying effects on the design and reliability assessment of future nanoelectromechanical systems. KW - Silicon nanowires KW - Native oxide KW - Surface stress KW - Surface elasticity KW - Mechanical behavior PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581676 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-58167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zemke, F. A1 - Schölch, V. A1 - Bekheet, M.F. A1 - Schmidt, Franziska T1 - Surfactant-assisted sol–gel synthesis of mesoporous bioactive glass microspheres N2 - Spherical mesoporous bioactive glasses in the silicon dioxide (SiO2)-phosphorus pentoxide (P2O5)–calcium oxide (CaO) system with a high specific surface area of up to 300m2/g and a medium pore radius of 4 nm were synthesized by using a simple one-pot surfactant-assisted sol–gel synthesis method followed by calcination at 500–700°C. The authors were able to control the particle properties by varying synthesis parameters to achieve microscale powders with spherical morphology and a particle size of around 5–10 mm by employing one structure-directing agent. Due to a high Calcium oxide content of 33·6mol% and a phosphorus pentoxide content of 4·0mol%, the powder showed very good bioactivity up to 7 d of immersion in simulated Body fluid. The resulting microspheres are promising materials for a variety of life science applications, as further processing – for example, granulation – is unnecessary. Microspheres can be applied as materials for powder-based additive manufacturing or in stable suspensions for drug release, in bone cements or fillers. KW - bioactive KW - biomaterials KW - bone PY - 2019 U6 - https://doi.org/10.1680/jnaen.18.00020 SN - 2045-9831 SN - 2045-984X VL - 8 IS - 2 SP - 126 EP - 134 PB - ICE Publishing CY - London AN - OPUS4-50148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches N2 - This third part of the review on defects as root cause of fatigue failure addresses cavities (pores, micro-shrinkages, unmelted regions), defective microstructures and microcracks as material defects and defects due to local damage during manufacturing, service and maintenance such as dents, scratches and localized corrosion. In addition, damage due to contact fatigue and the effect of surface roughness are discussed in the context of fatigue failure. Also addressed is the competition between different kinds of defects in controlling the initiation and early growth of fatigue cracks. KW - Pores KW - Micro-shrinkages KW - Impact damage KW - Contact fatigue KW - Corrosion pits KW - Scratches PY - 2019 U6 - https://doi.org/10.1016/j.engfailanal.2019.01.034 SN - 1350-6307 VL - 97 SP - 759 EP - 776 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. I: Basic aspects N2 - According to the definition of the ASM handbook [1,3], a defect is "an imperfection. that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection". The topic of the present three-part review is a discussion of defects which can cause failure in cyclically loaded structures. The features discussed comprise material defects such as non-metallic inclusions, pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches which have their origin in manufacturing, and defects such as surface damage due to scratches, impact events or contact fatigue as well as corrosion pits which arise in service. In this first part, the discussion is prefaced by an introduction to basic aspects which are essential for a deeper understanding of the characteristics and mechanisms how the defects influence fatigue crack initiation and propagation. These include the life cycle of a fatigue crack from initiation up to fracture, crack arrest, multiple crack initiation and coalescence, and the material and geometrical properties affecting these. KW - Defects KW - Fatigue crack propagation stages KW - Crack arrest KW - Multiple cracks PY - 2019 U6 - https://doi.org/10.1016/j.engfailanal.2019.01.055 SN - 1350-6307 VL - 97 SP - 777 EP - 792 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 U6 - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhandarov, S. A1 - Mäder, E. A1 - Kalinka, Gerhard A1 - Scheffler, C. A1 - Poitzsch, C. A1 - Fliescher, S. T1 - Investigation of interfacial strength parameters in polymer matrix composites: Compatibility and reproducibility N2 - Effects of various geometrical and physical factors, as well as the method of data reduction (analysis of experimental forceedisplacement curves) on the values of local interfacial strength parameters (local IFSS, td, and critical energy release rate, Gic) determined by means of a single fiber pull-out test are discussed. Experimental results of our pull-out tests on several fiberepolymer matrix systems showed that td and Gic weakly depended on geometrical factors. However, the pull-out test appeared to be sensitive to the conditions of specimen formation and testing, such as changing the nature of the contacting surfaces (fiber sizing) and the fiber pull-out rate. Of several methods of td and Gic Determination from a forceedisplacement curve, the most reliable and reproducible one is the approach based on the values of the maximum force recorded in a pull-out test and the interfacial frictional force immediately after fiber debonding. KW - Interface KW - Interfacial shear strength KW - Pull-out composite materials KW - Polymer matrix composites KW - Critical energy release rate KW - Geometrical factors PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-460918 SN - 2542-5048 VL - 1 IS - 1 SP - 82 EP - 92 PB - Elsevier CY - Amsterdam AN - OPUS4-46091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Darvishi Kamachali, Reza A1 - Boyce, B.L. A1 - Clark, B.G. A1 - Raabe, D. A1 - Thompson, G.B. T1 - Spinodal Decomposition in Nanocrystalline Alloys N2 - For more than half a century, spinodal decomposition has been a key phenomenon in considering the formation of secondary phases in alloys. The most prominent aspect of the spinodal phenomenon is the lack of an energy barrier on its transformation pathway, offering an alternative to the nucleation and growth mechanism. The classical description of spinodal decomposition often neglects the influence of defects, such as grain boundaries, on the transformation because the innate ability for like-atoms to cluster is assumed to lead the process. Nevertheless, in nanocrystalline alloys, with a high population of grain boundaries with diverse characters, the structurally heterogeneous landscape can greatly influence the chemical decomposition behavior. Combining atom-probe tomography, precession electron diffraction and density-based phase-field simulations, we address how grain boundaries contribute to the temporal evolution of chemical decomposition within the miscibility gap of a Pt-Au nanocrystalline system. We found that grain boundaries can actually have their own miscibility gaps profoundly altering the spinodal decomposition in nanocrystalline alloys. A complex realm of multiple interfacial states, ranging from competitive grain boundary segregation to barrier-free low-dimensional interfacial decomposition, occurs with a dependency upon the grain boundary character. KW - Density-based Thermodynamics KW - Nanocrystalline alloys KW - Spinodal decomposition KW - Defects engineering PY - 2021 U6 - https://doi.org/10.1016/j.actamat.2021.117054 VL - 215 SP - 117054 PB - Elsevier Ltd. AN - OPUS4-52918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Wei, Y. A1 - Kühbach, M. A1 - Zhao, H. A1 - Vogel, F. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. A1 - Raabe, D. A1 - Gault, B. T1 - Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data N2 - Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. KW - Machine learning KW - Digitalization KW - Alloy microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543049 SN - 1359-6454 VL - 226 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-54304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, Hartmut A1 - Zerbst, Uwe T1 - Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present two alternative burst speed assessment methods under development based on the Failure Assessment Diagram (FAD) and a global stability criterion, respectively. In the scope of the fracture mechanics assessment, the failure modes hoop-burst and rim-peeling are investigated with semicircular surface cracks modelled at the critical regions on the turbine disk. The comparison of the predicted critical rotational speed shows good agreement between the assessment methods. KW - Global stability criterion KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2023 U6 - https://doi.org/10.1016/j.engfracmech.2022.109005 SN - 0013-7944 VL - 277 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-56736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zia, Ghezal Ahmad Jan A1 - Hanke, Thomas A1 - Skrotzki, Birgit A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Enhancing Reproducibility in Precipitate Analysis: A FAIR Approach with Automated Dark-Field Transmission Electron Microscope Image Processing N2 - AbstractHigh-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management. KW - Industrial and Manufacturing Engineering KW - General Materials Science KW - Automated image analysis KW - FAIR research data management KW - Reproducibility KW - microstructural changes PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593905 SN - 2193-9772 SP - 1 EP - 15 PB - Springer Science and Business Media LLC CY - Heidelberg AN - OPUS4-59390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Fateri, M. A1 - Al-Sabbagh, Dominik A1 - Günster, Jens T1 - Investigation of the sintering and melting of JSC-2A lunar regolith simulant N2 - Future lunar exploration can benefit greatly from In-Situ Resource Utilization. Accordingly, the in-Situ Resource Utilization approach highlights the need for detailed analysis of lunar regolith. In this study, JSC-2A Simulant was studied regarding its sintering and melting behaviour using Differential Thermal Analysis under ambient and inert conditions. The minerals at the crystalline peaks were determined using X-Ray Diffraction analysis. Moreover, melting droplet shape and wetting behaviour of pressed regolith samples of different particle size distributions were studied by Hot Stage Microscopy technique. Hot Stage Microscopy experiments were performed at different heating rates under ambient conditions. Bloating effects within the solidified samples were then qualitatively examined by X-ray tomography. Lastly, the optimization of processing strategies for the Additive Manufacturing of lunar regolith is discussed. KW - Lunar regolith KW - Sintering KW - Melting KW - Hot stage microscopy PY - 2020 U6 - https://doi.org/10.1016/j.ceramint.2020.02.212 VL - 46 IS - 9 SP - 14097 EP - 14104 PB - Elsevier Ltd. AN - OPUS4-50869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print) N2 - The current work presents for the first time results on the Additive Manufacturing of SiSiC complex parts based on the Layerwise Slurry Deposition (LSD) process. This technology allows to deposit highly packed powder layers by spreading a ceramic slurry and drying. The capillary forces acting during the process are responsible for the dense powder packing and the good joining between layers. The LSD process can be combined with binder jetting to print 2D cross-sections of an object in each successive layer, thus forming a 3D part. This process is named LSD-print. By LSD-print and silicon infiltration, SiSiC parts with complex geometries and features down to 1mm and an aspect ratio up to 4:1 could be demonstrated. The density and morphology were investigated for a large number of samples. Furthermore, the density and the mechanical properties, measured by ball-on-three-balls method, were in all three building directions close to isostatic pressed references. KW - Silicon Carbide KW - Additive Manufacturing KW - 3D printing KW - Layerwise slurry deposition KW - LSD print PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2019.05.009 VL - 2019 IS - 39 SP - 3527 EP - 3533 PB - Elsevier Ltd. AN - OPUS4-48546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492190 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 U6 - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549204 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542262 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539373 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -