TY - JOUR A1 - Eh Hovsepian, P. A1 - Ehiasarian, A. P. A1 - Purandare, Y. P. A1 - Mayr, P. A1 - Abstoss, K. G. A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel A1 - Lasanta, M. I. A1 - Trujillo, J. P. T1 - Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components JF - Journal of Alloys and Compounds N2 - To increase efficiency, modern steam plants are pushing their operational regime from super-critical (600 °C/300 bar) to ultra-super-critical (740/760 °C/350 bar) stretching existing turbine materials to their limits. The focus is on new generation functional materials and technologies which complement the inherent properties of existing materials. Current work proposes a novel High Power Impulse Magnetron Sputtering (HIPIMS) Deposition technology, for the first time, for deposition of a ceramic based CrN/NbN coating with a nanoscale multilayer structure (bi-layer thickness Δ = 1.9 nm) with superior adhesion (LC2 = 80 N) to protect low Chromium P92 steel widely used in steam power plants. Thermodynamic calculations predict the equilibrium phases and aggressive gaseous compounds generated by the interaction of steam with the coating. CrN/NbN coated P92 steel samples oxidised at 600 °C in a high pressure (50 bar) 100% steam atmosphere for up to 1000 h reveal the coating's superior oxidation resistance and protective mechanisms, especially against the detrimental effect of Hydrogen. High temperature (650 °C) Tensile Strength, Low Cycle Fatigue and Creep tests confirm that, unlike other state-of-the-art PVD technologies, HIPIMS is not detrimental to the mechanical properties of the substrate material. Water droplet erosion tests confirm no measurable weight loss after 2.4 X 10⁶ impacts. KW - Hipims KW - CrN/NbN KW - Nanoscale multilayers KW - Steam oxidation resistance KW - Water droplet erosion resistance PY - 2018 DO - https://doi.org/10.1016/j.jallcom.2018.02.312 SN - 0925-8388 SN - 1873-4669 VL - 746 SP - 583 EP - 593 PB - Elsevier AN - OPUS4-44800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Wollschläger, Nicole A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel T1 - Thin Sol-Gel Alumina Coating as Protection of a 9% Cr Steel Against Flue Gas Corrosion at 650 °C JF - Oxidation of Metals N2 - Samples of sol-gel alumina coated and uncoated P92 steel were exposed to flue gas at 650 °C for 300 h. As result of this treatment a 50 µm thick bi-layered oxide scale had formed on the surface of the uncoated sample. Below the scale a 40 µm thick inner oxidation zone was detected. In contrast, the porous, micron thick alumina coating enabled the formation of a chromium oxide scale with a thickness of some nanometers at the interface between steel substrate and coating. In this case high temperature corrosion of the steel was prevented so far. KW - Steel KW - Oxide coatings KW - High-temperature corrosion KW - TEM KW - SEM PY - 2018 DO - https://doi.org/10.1007/s11085-017-9799-0 SN - 0030-770X SN - 1573-4889 VL - 89 IS - 3-4 SP - 453 EP - 470 PB - Springer AN - OPUS4-44472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mosquera Feijoo, Maria A1 - Oder, Gabriele A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela A1 - Kranzmann, Axel A1 - Olbricht, Jürgen T1 - Impact of Sample Geometry and Surface Finish on VM12‑SHC Ferritic–Martensitic Steel Under Cyclic Steam Atmosphere Operating Conditions JF - Oxidation of Metals N2 - The steam side oxidation of ferritic–martensitic VM12-SHC steel was investigated under thermo-cyclic conditions in water steam at 620/320 °C and 30 bar with a focus on assessing the influence of pre-oxidation time, specimen geometry and surface finish. The specimens were pre-oxidized under isothermal conditions in water steam at 620 °C and 30 bar for 500 h or 1500 h. After pre-oxidation treatment, all specimens were subjected up to 258 thermal cycles. Three different geometries—rectangular coupons, U-shaped ring segments and ring samples—were investigated to evaluate the influence of open/closed shape, and flat/curved surface on corrosion rate. At the same time, two types of surface finish were considered: “as received” and “ground.” The formation of a protective scale by pre-oxidation was investigated. EBSD and ESMA analyses revealed that the Cr-content of the alloy appeared to be insufficient for obtaining a protective oxide scale under studied conditions, at the same time the anayses confirmed that initial oxidation depends on presence of minor alloying elements as Si and Mn, strong oxide formers which can alter the kinetics and morphology of the corrosion reaction. Moreover, rectangular coupons with small wall thickness and flat surface exhibited the highest corrosion rate, while “ground” curved samples showed only local oxidation. This indicates that for same pre-oxidation time, oxidation kinetics is controlled by curvature. KW - Cyclic steam oxidation KW - 12%Cr steel KW - Specimen geometry KW - Surface treatments PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551808 DO - https://doi.org/10.1007/s11085-022-10114-6 SN - 0030-770X SP - 1 EP - 18 PB - Springer AN - OPUS4-55180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -