TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Böhning, Martin A1 - Niebergall, Ute T1 - Physical and chemical effects of biodiesel storage on high-density polyethylene: Evidence of co-oxidation N2 - The physical and chemical effects of diesel and biodiesel fuels on two high-density polyethylene (PE-HD) types were investigated. Both semi-crystalline PE-HD are common thermoplastic materials for container and storage tank applications. Biodiesel, a composition of unsaturated fatty acid esters from renewable resources, was chosen as it is regarded a possible green alternative to fossil fuels. The study aims at identifying significant differences between biodiesel and conventional diesel fuels based on the differences in the chemical nature of the two. The physical effects of the fuels on the polymer at first comprises the sorption behavior, i.e. kinetics and final equilibrium concentration. Not only are both fuels absorbed by the amorphous phase of the semi-crystalline PE-HD, they also induce a plasticization effect that modifies the molecular mobility and therefore also the characteristic yielding properties, manifest in the obtained stress-strain curves. The chemical effects related to degradation phenomena is investigated by a long-term storage scenario using partially immersed tensile test specimens in diesel and biodiesel. We were able to confirm the proposed co-oxidation mechanism by Richaud et al. for polyethylene-unsaturated penetrant systems on a larger scale based on practical tensile tests. One of the investigated polyethylene grades subjected to tensile drawing showed a significant loss of plastic deformation and the onset of premature failure after 150 days of storage in biodiesel. Further biodiesel storage showed a systematically reduced elongation at break before necking. None of these effects were observed in diesel. Oxidation of fuels and polymer after progressing storage times were analyzed by the evolution of carbonyl species in FT-IR/ATR spectroscopy. KW - Biodiesel KW - Degradation KW - Long-term storage KW - Sorption KW - Diesel PY - 2019 DO - https://doi.org/10.1016/j.polymdegradstab.2019.01.018 SN - 0141-3910 VL - 161 IS - 1 SP - 139 EP - 149 PB - Elsevier CY - Amsterdam AN - OPUS4-47268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gili, A. A1 - Bischoff, B. A1 - Simon, U. A1 - Schmidt, Franziska A1 - Kober, D. A1 - Görke, O. A1 - Bekheet, M. A1 - Gurlo, A. T1 - Ceria-based dual-phase membranes for high-temperature Carbon dioxide separation: Effect of iron doping and pore generation with MgO template N2 - Dual-phase membranes for high-temperature carbon dioxide Separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement These membranes industrially, the carbon dioxide permeability must be improved. In this study, Ce_(0.8) Sm_(0.2) O_(2-d) (SDC) and Ce_(0.8)Sm_(0.19)Fe_(0.01)O_(2-d) (FSDC) ceramic powders were used to form the skeleton in dual-Phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membrane’s ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system. KW - Samarium doped ceria KW - SDC KW - FSDC KW - CO2 separation membranes KW - Scavenging effect of iron KW - Permeability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488612 DO - https://doi.org/10.3390/membranes9090108 SN - 2077-0375 VL - 9 IS - 9 SP - 108, 1 EP - 15 PB - MDPI AN - OPUS4-48861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palantöken, Sinam A1 - Bethke, K. A1 - Zivanovic, V. A1 - Kneipp, Janina A1 - Rademann, Klaus A1 - Kalinka, Gerhard T1 - Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties N2 - Biopolymers are very efficient for significant applications ranging from tissue engineering, biological devices to water purification. There is a tremendous potential value of cellulose because of ist being the most abundant biopolymer on earth, swellability, and functional groups to be modified. A novel, highly efficient route for the fabrication of mechanically stable and natural hydrogels is described in which cellulose and glycine are dissolved in an alkaline solution of NaOH and neutralized in an acidic solution. The dissolving temperature and the glycine amount are essential parameters for the self-assembly of cellulose chains and for Tuning the morphology and the aggregate structures of the resulting hydrogels. Glycine plays the role of a physical crosslinker based on the Information obtained from FTIR and Raman spectra. Among the prepared set of hydrogels, CL5Gly30 hydrogels have the highest capacity to absorb water. The prepared CL5Gly30 gels can absorb up to seven times their dry weight due to its porous 3-D network structure. CL5Gly10 hydrogel exhibits 80% deformation under 21 N force executed. The method developed in this article can contribute to the application of heavy metal adsorption in aqueous solutions for water purification and waste management. KW - Biopolymer KW - Cellulose KW - Hydrogel KW - Natural KW - Synthesis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486845 DO - https://doi.org/10.1002/APP.48380 SN - 1097-4628 SN - 0021-8995 VL - 136 SP - 48380, 1 EP - 11 PB - Wiley CY - USA AN - OPUS4-48684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X. A1 - Schmidt, Franziska A1 - Gurlo, A. T1 - Fabrication of polymer-derived ceramics with hierarchical porosities by freeze casting assisted by thiol-ene click chemistry and HF etching N2 - The freeze casting technique assisted with cryo thiol-ene photopolymerization is successfully employed for the fabrication of macroporous polymer-derived silicon oxycarbide with highly aligned porosity. It is demonstrated that the free radical initiated thiol-ene click reaction effectively cross-linked the vinyl-containing liquid polysiloxanes into infusible thermosets even at low temperatures. Furthermore, mixed solution- and suspension-based freeze casting is employed by adding silica nanopowders. SiOC/SiO2 foams with almost perfect cylindrical shapes are obtained, demonstrating that the presence of nano-SiO2 does not restrict the complete photoinduced cross-linking. The post-pyrolysis HF acid treatments of produced SiOC monoliths yields hierarchical porosities, with SiOC/SiO2 nanocomposites after etching demonstrating the highest specific surface area of 494 m2/g and pore sizes across the macro-, meso- and micropores ranges. The newly developed approach gives a versatile solution for the fabrication of bulk polymer-derived ceramics with controlled porosity. KW - Freeze casting KW - Preceramic polymer KW - Hierarchical porosities KW - Thiol-ene click chemistry KW - Frozen state photopolymerization PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.09.038 SN - 0955-2219 VL - 40 IS - 2 SP - 315 EP - 323 PB - Elsevier AN - OPUS4-49172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -