TY - CONF A1 - Schröder, Jakob T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Influence of Microstructure on the Diffraction-Based Residual Stress Determination in Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing processes such as laser powder bed fusion (PBF-LB) offer the ability to produce parts in a single manufacturing step. On the one hand, this manufacturing technique offers immense geometric freedom in part design due to its layer-by-layer manufacturing strategy. On the other hand, the localized melting and solidification impose the presence of large temperature gradients in the process. From a microstructural perspective, this inevitably results in micro-segregation and a columnar grain structure, often paired with a significant crystallographic texture. Even worse, these large temperature gradients can lead to internal stress-induced deformation or cracking during processing. At the very least, residual stress is retained in the final structures as a footprint of this internal stress. In this context, diffraction-based methods allow the non-destructive characterization of the residual stress field in a non-destructive fashion. However, the accuracy of these methods is directly related to the microstructural characteristics of the material of interest. First, diffraction-based methods access microscopic lattice strains. To relate these lattice strains to a macroscopic stress, so-called diffraction elastic constants must be known. The deformation behavior is directly linked to the microstructure. Therefore, the diffraction elastic constants also depend on the microstructure. Second, the presence of crystallographic texture should be considered in the residual stress determination, as variations in crystal orientations contribute differently to the diffraction signal. Here we present the influence of the microstructure on the determination of residual stress by diffraction-based methods in as-built PBF-LB Inconel 718 parts. We obtained different microstructures by employing two different scanning strategies. In particular, different crystallographic textures were obtained by changing the relative angle of the scan vectors to the geometric axes of the part. The texture-based characterization of the residual stress field was carried out by surface, sub-surface, and bulk residual stress measurements. It was found that the residual stress determination significantly depends on the microstructure for strong crystallographic textures. T2 - Material Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Electron Backscatter Diffraction KW - Microstructure KW - Residual Stress KW - X-ray Diffraction PY - 2024 AN - OPUS4-61475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Rissentwicklung in CFK-Laminaten nachgewiesen durch in situ Röntgen-Refraktion N2 - In Leichtbauanwendungen sind Materialien mit geringen Dichten und hohen Festigkeiten gefragt. Insbesondere Faser-Kunststoff-Verbunde (FKV) erfüllen diese Anforderungen und werden zunehmend für Strukturbauteile eingesetzt. Die Oberflächen moderner Rotorblätter von Windkraftanlagen werden aus FKV gefertigt. Das Versagen dieser Materialien hat massiven Einfluss auf die Einsatzfähigkeit der gesamten Windkraftanlage. Daher ist die Kenntnis des Versagensverhaltens dieser Komponenten unter statischer und zyklischer Belastung von großem Interesse, um die Betriebsbeanspruchung abzuschätzen. Im Idealfall wird die Schadensentwicklung unter Betriebslast mit zerstörungsfreien in-situ-Prüfverfahren ermittelt. Hier berichten wir über die Beobachtung der Rissentwicklung in Carbon-Faserverstärkten Kunststoffen (CFK) unter kontinuierlicher Zugbelastung durch in-situ Synchrotron-Röntgenrefraktionsradiographie. Eine selbst entwickelte elektromechanische Zugprüfmaschine mit einem Kraftbereich bis zu 15 kN wurde in den Strahlengang an der BAMline (BESSY II) integriert. Da in herkömmlichen (Absorptions-) Radiographien Defekte wie Zwischenfaserbrüche oder Faser-Matrix-Enthaftung keinen ausreichenden Kontrast verursachen, wird zur Kontrastanhebung die Röntgenrefraktion benutzt. Hier wird das sogenannte Diffraction Enhanced Imaging (DEI) angewandt, um Primär- und gebrochene Strahlung mit Hilfe eines Analysatorkristalls zu trennen. Diese Technik ermöglicht schnelle Messungen mit einem Gesichtsfeld von einigen Quadratmillimetern (hier: 14 mm × 7.2 mm) und ist ideal für in-situ Untersuchungen. Die Bildgebung und der Zugversuch erfolgen mit einer Bildfrequenz von 0.7 / s und einer Dehnrate von 0.00055 / s . Bei 0°/90° Fasergelegen treten die ersten Zwischenfaserrisse bei 380 MPa (Dehnung 0.8 %) auf. Vor dem Versagen bei ca. 760 MPa (Dehnung 2.0 %) beobachten wir die Ausbildung eines nahezu äquidistanten Rissmusters (Risse in ca. 1 mm Abstand), das sich im geschädigten Zustand über die gesamte Probe erstreckt. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Synchrotronstrahlung KW - CFK KW - Rissentwicklung PY - 2023 AN - OPUS4-57622 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Numerical study of electric field distribution in breakdown strength testing of ceramics N2 - Dielectric breakdown of insulators is a combined electrical, thermal, and mechanical failure. The exact breakdown mechanism in ceramics and the formulation of useful models are still subject of investigation. Recent studies highlighted that several experimental aspects of dielectric breakdown strength testing affect the test results, and thus impede the recognition of fundamental principles. Excess field strength near the electrode can lead to premature breakdown in the insulating liquid. This would cause superficial damage to the test specimen and thus falsify the measurement results. The field strength distribution is influenced by the ratio of permittivity of the sample and the surrounding insulating liquid. Premature breakdown depends on the breakdown strength of the liquid and the actual test voltage. The test voltage again depends on the specimen thickness. To systematically investigate these relations, a numerical simulation study (FEM) of the electric field distribution in a typical testing rig with cylindrical electrodes was performed. The permittivity of the sample and the insulating liquid was parameterized, as well as the sample thickness. The electric field distribution was calculated for increasing test voltage. Field strength maxima are compared to experimental breakdown strength of typical insulating liquids and experimental breakdown locations on alumina. Strategies are discussed to adjust the insulation liquid and the sample thickness to reduce the influence of the testing setup on the dielectric breakdown strength results. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Ceramics KW - Dielectric breakdown strength KW - Electric field distribution KW - Alumina PY - 2022 AN - OPUS4-55325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - How experimental and computational methods allow us to design negative thermal expansion materials N2 - Combined experimental and computational methods allow comprehensive understanding, design, and tailoring of material properties. We focus on a wellknown negative thermal expansion (NTE) material, zirconium vanadate (ZrV2O7), and address synthesis, characterisation and validation of results with computational simulations. Experimental and computational X-ray diffraction and Raman spectroscopy data highlighted differences between phase-pure and multiphase ceramics. These techniques allowed us to distinguish subtle differences in the structure of the material. Based on ab initio simulated phonon data, unaffected by impurities or instrumental errors, we could interpret the Raman spectra and visualise Raman active atom vibrations. These computational models allowed better insight and further experimental improvement while high-quality experimental data granted the validation and improvement of computational simulation strategy. T2 - SALSA Make and Measure 2024 CY - Berlin, Germany DA - 11.09.2024 KW - NTE KW - Sol-gel KW - Ab initio KW - Raman KW - XRD PY - 2024 AN - OPUS4-61358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Miliūtė, Aistė T1 - Synthesis and phase purity of the negative thermal expansion material ZrV2O7 N2 - This repository contains computational and experimental data for the manuscript titled “Synthesis and phase purity of the negative thermal expansion material ZrV2O7”. KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - XRD KW - Raman PY - 2024 DO - https://doi.org/10.5281/zenodo.12688634 PB - Zenodo CY - Geneva AN - OPUS4-61360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Hennecke, M. ED - Skrotzki, Birgit T1 - Hütte Band 2: Grundlagen des Maschinenbaus und ergänzende Fächer für Ingenieure N2 - Die HÜTTE ist ein Kompendium und Nachschlagewerk für unterschiedliche Aufgabenstellungen. Durch Kombination der Einzeldisziplinen dieses Wissenskreises kann das multidisziplinäre Grundwissen für die verschiedenen Technikbereiche und Ingenieuraufgaben zusammengestellt werden. Die HÜTTE enthält in drei Bänden - orientiert am Stand von Wissenschaft und Technik und den Lehrplänen der Technischen Universitäten und Hochschulen - die Grundlagen des Ingenieurwissens. Band 2 enthält die Grundlagen des Maschinenbaus und ergänzende Fächer. KW - Grundlagen des Maschinenbaus PY - 2022 SN - 978-3-662-64371-6 DO - https://doi.org/10.1007/978-3-662-64372-3 SN - 2522-8188 SP - 1 EP - 967 PB - Springer Vieweg CY - Berlin ET - 35 AN - OPUS4-55740 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein T1 - Domain-level ontology formulation based on the Platform Material Digital (PMD) ontology: case study Brinell hardness N2 - A large amount of publicly available data is reproduced every day in the field of materials science, while these kind of material data can have different formats and types like paper-type publications, standards, datasheets or isolated datasets in repositories. However, gathering a specific library from such extensive and diverse material data is always challenging for the materials scientists and engineers, since the time-related limitations are not allowed to fully access the large publicly available databases; search across these disparate databases, manage the large volumes of heterogeneous datasets, and integrate data from multiple sources. To address these challenges and make data findable, accessible, interoperable, and reusable (FAIR), an efficient data management system is necessary to build comprehensive, documented, and connected data spaces in the future. A formal standardized knowledge representation through an ontology can address such problems and make data more available and interoperable between related domains. Ontology can also rich machine processable semantic descriptions that increases the performance of scientific searches. In this regard, the Platform MaterialDigital (PMD) is currently working on developing a high-level ontology for the materials and material related processes. For example, in one of the PMD projects of “KupferDigital”, we will try to develop a data ecosystem for digital materials research based on ontology-based digital representations of copper and copper alloys. As a case study, this paper describes the methodology for ontology development of Brinell hardness, based on PMD core ontology. The methodology we describe includes the following steps; gathering the required domain terminology from different resources like standards (DIN EN ISO 6506-1) and test reports, representing the performance of a standard-conformant hardness test and the treatment of the recorded values up to a “reportable” hardness value for a material, designing the process chain according to the semantic technologies, and developing a domain-level ontology of Brinell hardness based on PMD ontology semantic formalization. Apart the mentioned methodology, some interesting tools and methods were introduced and ontology design challenges and possible solutions for modelling materials and processes were discussed. Furthermore, a dataset from the Brinell hardness measurement of cast copper samples is prepared for testing the query process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Copper KW - Materials Science KW - Ontology KW - Platform MaterialDigital (PMD) KW - Brinell hardness PY - 2022 AN - OPUS4-56092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-Oriented Modeling of the Vickers Hardness Knowledge Graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. KW - Data Mapping KW - FAIR Data KW - Ontology KW - Knowledge Graph KW - Vickers Hardness PY - 2024 DO - https://doi.org/10.4028/p-k8Gj2L VL - 149 SP - 33 EP - 38 PB - Trans Tech Publications Ltd CY - Switzerland AN - OPUS4-59981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Adapting FAIR Practices in Materials Science: Digital Representation of Material-Specific Characterization Methods N2 - Age-hardenable aluminum alloys undergo precise heat treatments to yield nanometer-sized precipitates that increase their strength and durability by hindering the dislocation mobility. Tensile tests provide mechanical properties, while microstructure evaluation relies on transmission electron microscopy (TEM), specifically the use of dark-field TEM images for precise dimensional analysis of the precipitates. However, this manual process is time consuming, skill dependent, and prone to errors and reproducibility issues. Our primary goal is to digitally represent these processes while adhering to FAIR principles. Ontologies play a critical role in facilitating semantic annotation of (meta)data and form the basis for advanced data management. Publishing raw data, digital workflows, and ontologies ensures reproducibility. This work introduces innovative solutions to traditional bottlenecks and offers new perspectives on digitalization challenges in materials science. We support advanced data management by leveraging knowledge graphs and foster collaborative and open data ecosystems that potentially revolutionize materials research and discovery. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - FAIR KW - Research Data Management KW - Semantic Interoperability KW - Ontologies KW - Materials and Processes Data Reusability PY - 2024 AN - OPUS4-60375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit T1 - Fatigue Crack Growth of Heat Resistant Austenitic Cast Iron under Isothermal and Anisothermal Conditions N2 - The heat-resistant cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) was investigated for its fatigue crack growth behavior at room and high temperatures. Force-controlled tests were carried out at constant temperatures (20 °C, 500 °C, 700 °C) without and with hold time and different load ratios. The crack growth behavior was also characterized under TMF loading (Tmin = 400 °C, Tmax = 700 °C) by applying IP and OP conditions and different load ratios. Three different techniques were combined to monitor crack growth: potential drop, thermography, and compliance method. The effect of the different loading conditions on the fatigue crack growth behavior will be presented and discussed. T2 - TMF Workshop 2024 CY - Berlin, Germany DA - 25.04.2024 KW - Fatigue crack growth KW - Thermomechanical fatigue KW - Austenitic cast iron KW - Ni-Resist PY - 2024 AN - OPUS4-59964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Gas turbine components, made of nickel-based alloys, undergo material damage due to high temperatures and mechanical stresses. These components need periodic replacement to avoid efficiency loss and failure. Repair of these parts is more cost-effective than replacement. State-of-the-art repair technologies, including different additive manufacturing (AM) and brazing processes, are considered for efficient restoration. Materials properties mismatches and/or internal defects in repaired parts may expedite crack initiation and propagation, reducing fatigue life. To understand the crack growth behavior in joining zones and predict the remaining life of repaired components, fatigue crack growth (FCG) tests were conducted on specimens of nickel-based alloys joined via brazing, pre-sintered preforms and AM. The FCG experimental technique was successfully adapted for joined specimens and results indicate that the investigated braze material provides a lower resistance to crack growth. In AM-sandwich specimens, the crack growth rates are significantly reduced at the interface of AM and cast material. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, USA DA - 03.03.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-59854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Nickel-based alloys have been widely used for gas turbine blades owing to their excellent mechanical properties and corrosion resistance at high temperatures. The operating temperatures of modern gas turbines have been increased in pursuit of increased thermal efficiency. Turbine blades are exposed to these high temperatures combined with mechanical stresses, resulting in material damage through creep, fatigue, and other mechanisms. These turbine blades must be regularly inspected and replaced as needed, to prevent the loss of efficiency, breakdown, and catastrophic failure. Repair of the damaged turbine blades is often a more practical and cost-effective option than replacement, as replacement is associated with high costs and loss of material resources. To this end, state-of-the-art repair technologies including different additive manufacturing and brazing processes are considered to ensure efficient repair and optimum properties of repaired components. In any repaired part, materials property-mismatches and/or inner defects may facilitate the crack initiation and propagation and thus reduce the number of load cycles to failure. Therefore, a fundamental understanding of the fatigue crack growth and fracture mechanisms in joining zones is required to enable the prediction of the remaining life of repaired components and to further improve and adapt the repair technologies. Fatigue crack growth experiments have been conducted on SEN (Single Edge Notch) specimens joined via brazing, and pre-sintered Preform (PSP) and multi-materials (casted/printed) specimens layered via additive manufacturing (AM). The experiments were performed at 950 °C and various stress ratios. The crack growth was measured using DCPD (Direct Current Potential Drop) method. The stress intensity factors for joined SEN specimens were calculated using the finite element method and then used to derive the fatigue crack growth curves. Metallographic and fractographic analyses were conducted to get insight into the fracture mechanism. Results show that the experimental technique for fatigue crack growth was successfully adapted and applied for testing joined specimens. Furthermore, the initial tests indicate that the investigated braze filler material provides a lower resistance to crack growth, and bonding defects cause a crack to deviate to the interface of the base material and joining zone. In AM-sandwich specimens, the crack growth rates are significantly reduced when the crack reaches the interface of printed material and casted material. The obtained crack growth data can be used to calibrate a crack growth model, which will further be utilized to predict the remaining life of repaired components. T2 - Fatigue 2024 Conference CY - Cambridge, UK DA - 19.06.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-60893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion N2 - Metal additive manufacturing (Metal AM) continues to gain momentum. Many companies explore the manufacturing of innovative products, including components for safety critical applications. Despite the intensive research of recent years, a fundamental understanding of the process‑structure‑property relationships remains challenging due to, i.a., the inherently complex and highly hierarchical microstructures arising from the wide range of build process parameter variability. This contribution presents the resu lts of an experimental study on the creep behavior of an austenitic 316L stainless steel produced by laser powder bed fusion (PBF LB/M/316L) with an emphasis on understanding the effects of microstructure on creep mechanisms. Hot tensile tests and constant force creep tests at 600 °C and 650 °C, X ray computed tomography, as well as optical and electron microscopy were performed. The produced PBF LB/M/316L exhibits a low void population 0.01 %) resulting from the manufacturing parameters used and which a llowed us to understand the effects of other microstructural aspects on creep behavior, e.g., grain morphology and dislocation substructure. A hot‑rolled variant of 316L hwas also tested as a reference. The produced PBF LB/M/316L possesses shorter primary and secondary creep stages and times to rupture and smaller creep stress exponents than the hot‑rolled variant. Overall, the creep damage is more extensive in the PBF LB/M/316L and is characterized as predominantly intergranular. It is considered that the damage behavior is mainly impacted by the formation of precipitates at the grain boundaries combined with their unfavorable orientation. The dislocation substructure and local elemental segregation appear to have a decisive impact on the overall creep behavior. T2 - 16th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Bangalore, India DA - 28.07.2024 KW - AGIL KW - 316L KW - Additive Manufacturing KW - Creep KW - Microstructure evolution PY - 2024 AN - OPUS4-60839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Towards Structured Data Spaces: Prototypical Application of Semantic Technologies as a Driver for Innovation in Materials Science N2 - In the pursuit of advancing development and digitalization within materials science, ensuring quality assurance, interoperability, and adherence to FAIR principles is significant. To address these aspects, semantic technologies are employed for storage, processing, and contextualization of data, offering machine-actionable and human-readable knowledge representations crucial for data management. This presentation showcases the prototypical application of generic approaches of knowledge representation in materials science. It includes the design and documentation of graph patterns that may be compiled into rule-based semantic shapes. The development and application of the PMD Core Ontology 3.0 (PMDco 3.0) tailored for materials science is highlighted. Its integration into daily lab life is demonstrated through its functional incorporation into electronic lab notebooks (ELN). Examples of material processing and standardized mechanical testing illustrate how knowledge graph operations enhance ELN capabilities, providing a generalizable unified approach for managing diverse experimental data from different sources with automation potentials. T2 - TMS Specialty Congress 2025 CY - Anaheim, CA, USA DA - 15.06.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - Plattform MaterialDigital PY - 2025 AN - OPUS4-63401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ávila Calderón, Luis Alexander A1 - Matzak, Kathrin A1 - Olbricht, Jürgen A1 - Dolabella Portella, Pedro A1 - Skrotzki, Birgit T1 - BAM Reference Data: High Temperature Tensile Data of Single-Crystal Ni-Based Superalloy CMSX-6 N2 - This publication provides comprehensive metadata and test results of tensile tests at elevated temperature according to DIN EN ISO 6892-2:2018-09 on the single crystal Ni-based superalloy CMSX-6 at T = 980 °C. The tests were performed in an ISO 17025-accredited test laboratory. The calibrations of measuring equipment are documented, meet the requirements of the measurement standard, and are metrologically traceable. The provided data were audited and are BAM reference data. KW - Digitalisierung KW - Referenzdaten KW - CMSX-6 KW - Zugversuch KW - NFDI-MatWerk KW - Ni-Basis-Superlegierung PY - 2025 DO - https://doi.org/10.5281/zenodo.17846616 PB - Zenodo CY - Geneva AN - OPUS4-65338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Camin, B. T1 - Grenzflächenanalyse diffusionsgeschweißter Werkstoffpaarungen Nickel/ Nickelbasis-Superlegierung CMSX-4 N2 - Der Kirkendall-Effekt tritt bei aneinandergrenzenden Metallpaarungen auf, die höheren Temperaturen ausgesetzt sind. Es findet als Funktion von der Temperatur, der Zeit und der Konzentration die Diffusion von Atomen und Leerstellen über die Phasengrenze hinweg statt. Für die Untersuchung des Kirkendall-Effekts wurde mittels Diffusionsschweißens eine Werkstoffpaarung bestehend aus reinem Nickel (Ni) und der Nickelbasis-Superlegierung CMSX-4 hergestellt. Das Gefüge des reinen Nickels ist polykristallin und von CMSX-4 einkristallin. Da der Kirkendall-Effekt neben den oben genannten Parametern zudem von der Kristallorientierung abhängig ist, wurden zwei verschiedene Kristallorientierungen, die [111]- und [001]-Richtungen, gewählt. Aus 3D µ-tomografischen Untersuchungen ist bekannt, dass heiß-isostatisches Pressen (HIP) eine Verringerung der Porosität in CMSX-4 bewirkt, die durch die Erstarrung des Einkristalls bei der Herstellung entsteht [1]. Daher wurden bei den Diffusionsschweißungen Werkstoffpaarungen von reinem Nickel mit drei CMSX-4-Varianten -mit einer γ/γ‘-Mikrostrukturkombiniert: Ni/ CMSX-4 [111], Ni/ CMSX-4 [001] und Ni/ CMSX-4 [001]-HIPed. Die bei der Diffusionsschweißung entstehenden Grenzschichten wurden mittels Stereo-, Licht- und Rasterelektronenmikroskopie sowie EDX-Analysen untersucht. Bei allen Diffusionsschweißungen entstand eine feste Verbindung zwischen den Werkstoffpaarungen. Wie bereits aus [2] bekannt, bildet sich bei allen Proben auf der Rein-Nickelseite der Grenzfläche ein Porensaum aus, während sich auf der CMSX-4-Seite ein γ‘-freie Zone bildet (Abbildung 1). Sowohl die jeweilige Porosität als auch Porengröße des Porensaums der drei Werkstoffpaarungen ist verschieden. Dieses gilt ebenso für die durchschnittliche Schichtdicke der γ‘-freie Zone. Die geringste durchschnittliche Schichtdicke mit 1,45 µm weist die Paarung Ni/ CMSX-4 [001]-HIPed (Abbildung 1b) auf, wobei die Dicke über den Probenquerschnitt konstant ist. Dagegen schwanken die Schichtdicken der γ‘-freie Zonen bei Ni/ CMSX� 4 [111] (Abbildung 1c) zwischen 1,82 – 4,1 µm und Ni/ CMSX-4 [001] (Abbildung 1a) zwischen 1,36 - 4,55 µm. EDX-Messungen (Linescans) von der CMSX-4-Seite über die γ‘-freie Zone bis in den Nickelwerkstoff zeigen den qualitativen Verlauf der Elementkonzentrationen von Nickel und Aluminium (Abbildung 2). Bei allen Werkstoffpaarungen nimmt die Konzentration des Elements Nickel kontinuierlich zu. Während in der Werkstoffpaarung Ni/CMSX-4 [111] der Konzentrationszunahme symmetrisch über die Grenzfläche verläuft, weist Nickel bei den Werkstoffpaarungen Ni/CMSX-4 mit [001]-Orientierung keinen symmetrischer Konzentrationsverlauf auf. Daraus lässt sich schließen, dass hier die Diffusion von Nickel über die Grenzfläche in die γ‘-freie Zone in Abhängigkeit von der Kristallorientierung unterschiedlich stattfindet. Entgegengesetzt diffundiert das Element Aluminium von der CMSX-4-Seite zur Nickelseite, wie sich aus dem ebenfalls unsymmetrischen Elementverlauf schließen lässt. Bemerkenswert ist hier ein Knick, der sich nach einem Steilabfall einem Plateau anschließt, wie im vergrößerten Ausschnitt in Abbildung 2 mit einem roten Pfeil markiert ist. Dieser Verlauf ist von der Kristallorientierung unabhängig und ist auf die bessere Diffusivität von Al im Vergleich zu Ni zurückzuführen. T2 - Materialographie 2024 CY - Berlin, Germany DA - 18.09.2024 KW - Diffusionsschweißen KW - Grenzfläche KW - Nickelbasis-Superlegierung KW - Kirkendall-Effekt PY - 2024 AN - OPUS4-61095 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Ansätze zur digitalen Wissensrepräsentation aus der Plattform MaterialDigital (PMD) N2 - Die Digitalisierung von Materialien und Prozessen stellt eine große Herausforderung dar, die nur durch eine Bündelung der Bemühungen aller Beteiligten in diesem Bereich erreicht werden kann. Bei einer derartigen digitalen Beschreibung spielen Datenanalysemethoden, eine Qualitätssicherung von Prozessen inklusive Input- und Output-Daten sowie die Interoperabilität zwischen Anwendungen nach den FAIR-Prinzipien eine wichtige Rolle. Dies umfasst das Speichern, Verarbeiten und Abfragen von Daten in einer vorzugsweise standardisierten Form (Beteiligung von Normungsgremien). Zur Bewältigung dieser Herausforderung ist eine mit allen Stakeholdern konsistente Kontextualisierung der Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Eine zentrale Betrachtungsweise in diesem Zusammenhang ist die Realisierung von (automatisierten) Datenpipelines, die eine Beschreibung und Verfolgung von Daten ausgehend von ihrer Erzeugung, bspw. in einem Messgerät, bis zu ihrer globalen Verwendung in möglicherweise verschiedenen Kontexten beinhalten. Erste Bemühungen und Ansätze zu diesen Problemstellungen führten im Projekt Innovations-Plattform Material Digital (PMD, materialdigital.de) zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. Weiterhin wurde, ausgehend von der domänenspezifischen Entwicklung von Anwendungsontologien, eine Kernontologie erstellt, die eine übergeordnete Verbindung von ontologischen Konzepten aufgrund der Verwendung gleichen Vokabulars und semantischer Verknüpfungen erlaubt. Diese sowie die das PMD-Projekt selbst werden ebenfalls in dieser Präsentation vorgestellt. T2 - DVM Workshop: Grundlagen und Beispiele zur Digitalisierung für die Materialforschung und -prüfung CY - Online meeting DA - 19.10.2021 KW - Plattform Material Digital (PMD) KW - Ontologie KW - Zugversuch KW - Wissensrepräsentation KW - Semantic Web PY - 2021 AN - OPUS4-53565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Yue T1 - Ontopanel: a diagrams.net plugin for graphical semantic modelling N2 - Ontologies that represent a map of the concepts and relationships between them, are becoming an effective solution for data standardization and integration of different resources in the field of materials science, as efficient data storage and management is the building block of material digitization. However, building a domain ontology is not a simple task. It requires not only a collaborative effort between ontologists and domain experts, but also the modeling approaches and tools play a key role in the process. Among all approaches, graphical representation of domain ontologies based on standard conceptual modeling languages is widely used because of its intuitiveness and simplicity. Various tools have been developed to realize this approach in an intuitive way, such as Protégé plugins and web visualization tools. The Materials-open-Lab (MatOLab) project, which aims to develop ontologies and workflows in accordance with testing standards for the materials science and engineering domains, adopted a UML (Unified Modeling Language) approach based on the diagrams.net. It is a powerful, popular, open-source graphical editor. In practical case studies, however, many users’ needs could not be met, such as reusing ontology, conversion, and data mapping. Users must switch between different tools to achieve a certain step, and thereby invariably increase learning cost. The lack of validation also leads to incorrect diagrams and results for users who are not familiar with the ontology rules. To address these issues, we designed Ontopanel, a diagrams.net-based plugin that includes a set of pipeline tools for semantic modeling: importing and displaying protégé-like ontologies, converting diagrams to OWL, validating diagrams by OWL rules, and mapping data. It uses diagrams.net as the front-end for method modeling and Django as the back-end for data processing. As a web-based tool, it is very easy to expand its functionality to meet changing practical needs. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Ontology KW - Tools KW - Material digital KW - Mat-o-lab KW - Graphic design KW - Ontology development KW - Data mapping KW - FAIR KW - Materials testing PY - 2022 AN - OPUS4-55884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -