TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Goedecke, Caroline A1 - Sojref, Regine T1 - Transformation of the antidiabetic drug metformin N2 - For years there have been more and more reports on the presence of drugs in the aquatic environment. Due to the demographic change, the consumption of pharmaceuticals has risen sharply. After taking the drugs, they are partly metabolized in the human body. However, the metabolism is not complete so that both the metabolites and non-metabolized amounts of the parent compounds are excreted. These compounds reach the waste water and afterwards the sewage treatment plants. In sewage treatment plants transformation products can be formed by the oxidative conditions during wastewater treatment processes. The transformation products may have a higher toxicity than the actual environmental pollutants and are often only partly removed during the waste water treatment. Since a lot of these compounds are still unknown, the transformation products are not detected by target analysis used in sewage treatment plants and are often released undetected in the aquatic ecosystems. The released substances may be subject to additional transformation processes in the environment. Pharmaceuticals produced in high amounts can be already detected in the μg/L range in water bodies worldwide. Metformin and its major transformation product guanylurea are one of the main representatives. Metformin is the drug of choice for treating type 2 diabetes. The drug therapy for diabetes mellitus has increased significantly in recent years. In the year 2015 1500 tons of metformin were prescribed in Germany (for statutory insured persons). Metformin is not metabolized in the human body and is excreted unchanged therefore concentrations between 57 μg/L and 129 μg/L are found in German waste water treatment plants influents. In this work the transformation of the antidiabetic drug metformin is investigated. The degradation of metformin is initialize by commercial water treatment techniques like UV-radiation or noncommercial techniques like heterogenous photocatalysis based on titanium dioxide. The degradation of metformin and resulting transformation products are analyzed by LC-MS/MS and LC-HRMS. T2 - SPEA 10 CY - Almeria, Spain DA - 04.06.2018 KW - Metformin KW - Photocatalysis PY - 2018 AN - OPUS4-47030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that are released from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack-tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for industrial soda-lime silicate glasses, which are practically free (< 1000 ppm) of dissolved water. To shed light on the corrosion process, the situation at the crack-tip is reversed in the present study as dissolved water in larger fractions is present in the glass and crack propagation is triggered in dry environment. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses of standard glass manufacturing. SCCG was measured using the double cantilever beam technique and by Vickers indentation. For dry glasses, three trends in the crack growth velocity versus stress intensity curve were found. The slope in region I limited by environmental corrosion increases in the order sodium aluminosilicate < sodium borosilicate ≲ sodium lead silicate. The velocity range of region II reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that those of low Tg are more prone to SCCG. As water strongly decreases Tg, it promotes SCCG. First results indicate that molecular water has a dominating influence on SCCG. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - DCB KW - Glass KW - Crack growth KW - Water speciation PY - 2018 AN - OPUS4-47164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low H2-diffusity N2 - Effective hydrogen storage capacities are prerequisite for an efficient energy provision using fuel cells. Since glass has low intrinsic hydrogen permeability, it is a promising material for hydrogen storage containers as well as hydrogen diffusion barriers. Previous studies on oxidic glasses suggest a correlation between the glass composition and hydrogen permeation that was derived mainly from silica glass. In the present study, we concentrate on the relationship between thermodynamic (i.e., configurational entropy) and topologic (i.e., free volume, network polymerization) parameters. Experimental data were gathered well below the glass transition temperature, excluding significant effects caused by structural relaxation and chemical dissolution of hydrogen. The results of seven analysed glasses on the SiO2-NaAlO2 joint showed that the hydrogen permeability in fully polymerized glasses cannot solely be derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen solubility and diffusion. Additionally, the results indicate that the configurational heat capacity ΔCp at Tg affects the hydrogen permeability of the investigated glasses. T2 - 92. Glastechnische Tagung der DGG CY - Bayreuth, Germany DA - 28.05.2018 KW - Hydrogen permeability KW - Atomic packing factor KW - Glass composition KW - Diffusion coefficient PY - 2018 AN - OPUS4-45900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - The influence of volatile constituents on mechanical properties of glasses N2 - Im Rahmen des Young Researcher Day des SPP1594 wurden die bisherigen Inhalte der Projekte zusammengefasst und vorgetragen. T2 - Annual Meeting and Young Researcher Day CY - Jena, Germany DA - 11.09.2018 KW - Glass KW - Crack growth KW - Vickers KW - DCB KW - Water speciation PY - 2018 AN - OPUS4-46728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nofz, Marianne T1 - High temperature coatings (Book review) N2 - All in all, practicing professionals as well as researchers can read this book with pleasure and great benefit. It presents a comprehensive collection of data and practical examples manifested in about 100 graphs, 80 schemes of processes and devices, a manifold of images showing the microstructure of alloys or details of components and several phase diagrams. Tables containing data on commercially available coatings, alloys, compositions of corrosive salts, function of constituents of coatings add further important pieces of information. Thus, this book is a valuable source of information for anyone engaged in work with or research on high temperature coatings. KW - Coating KW - High temperature PY - 2018 DO - https://doi.org/10.1002/maco.201870104 SN - 0947-5117 VL - 69 IS - 10 SP - 1490 EP - 1490 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian M. A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585284 DO - https://doi.org/10.1016/j.intermet.2023.108074 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525551 DO - https://doi.org/10.3390/coatings11050526 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - Onto Commons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Data space PY - 2023 AN - OPUS4-58732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Finn, Monika A1 - Uhlemann, Patrick A1 - Meyer, Christian A1 - Scheuerlein, C. A1 - Amez-Droz, M. A1 - Meuter, F. A1 - Konstantopoulou, K. A1 - Savary, F. A1 - Tock, J.-P. T1 - Thermomechanical properties of polymers for use in superconducting magnets N2 - The coefficient of thermal expansion (CTE) and the thermomechanical properties of the polymers used in superconducting magnets need to be known in order to predict their stress state under the different magnet assembly and operating conditions. We have measured Young’s moduli of typically used polymers during in situ heat cycles with the dynamic resonancemethod. The dynamic test results are compared with Young’s moduli determined from quasi-static stress–strain measurements at room temperature, 77 K and 4.2 K. A moderate elastic anisotropy is found for the fiber reinforced polymers. CTEs are compared based on dilation experiments. TheCTEs of the fiber reinforced polymers studied are similar to those of copper or steel. In contrast, the pure resins exhibit relatively larger CTEs. KW - Polymer KW - Superconducting magnet KW - Young´s modulus KW - Stress-strain behavior KW - Resonance testing KW - Coefficient of thermal expansion PY - 2019 DO - https://doi.org/10.1109/TASC.2019.2898321 SN - 1051-8223 SN - 1558-2515 VL - 29 IS - 5 SP - 7701605, 1 EP - 5 PB - IEEE AN - OPUS4-47616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - An overview on the effect of dissolved water on the viscosity of soda lime silicate melts N2 - In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H2Omolecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the timetemperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions. KW - Water in glass KW - Viscosity KW - Soda lime silicate glass KW - Shear thinning KW - Nydrogen melting PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587276 DO - https://doi.org/10.1016/j.nocx.2023.100195 VL - 19 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587284 DO - https://doi.org/10.52825/glass-europe.v1i.425 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587295 DO - https://doi.org/10.1111/jace.19245 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras Jaimes, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - UST-DGG joint meeting CY - Orléans, France DA - 23.05.2023 KW - Glass melting KW - Thermo-optical measurement PY - 2023 AN - OPUS4-58733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -