TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Agudo Jácome, Leonardo A1 - Olbricht, Jürgen T1 - Dwell-Fatigue and Cyclic Softening of Grade P92 Steel under LCF and TMF Conditions N2 - Tempered martensite-ferritic steels, such as the grade P92 steel studied in this contribution, exhibit pronounced macroscopic cyclic softening under isothermal low-cycle fatigue (LCF) and non-isothermal thermomechanical fatigue (TMF) conditions, which is considered to be the predominant degradation mechanism in high-temperature fatigue in this and other material groups. However, such softening processes are highly complex since microscopic (e.g., recovery) and macroscopic (e.g., crack initiation and growth), as well as global and local effects superimpose, especially under creep-fatigue conditions. In this contribution, we discuss the cyclic deformation and softening behavior of P92 in strain-controlled LCF, in-phase (IP) TMF, and out-of-phase (OP) TMF tests with and without dwell times in the temperature range from 300 °C to 620°C. EBSD-based dislocation analysis on various fatigued material states confirms the continuous redistribution and annihilation of geometrically necessary dislocations in all studied states, which can be quantitatively correlated with macroscopic softening despite different damage mechanisms for different test types. Deviations from this correlation are observed for OP TMF and LCF with dwell times, i.e., for conditions where optical microscopy reveals pronounced crack-oxidation interactions at the specimen surfaces. T2 - LCF9 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - LCF KW - TMF KW - EBSD PY - 2022 U6 - https://doi.org/10.48447/LCF9-2022-111 AN - OPUS4-55128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Sonntag, Nadja A1 - Nolze, Gert A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Jürgens, Maria T1 - Cyclic mechanical performance and microstructure evolution of P92 under LCF and TMF conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing contribution of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In this contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of fatigue and creep/relaxation periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain). Temperature intervals of TMF tests were chosen as either 300-620°C or 500-620°C, resembling so-called warm or hot start conditions of a power plant. The test results will be presented and discussed with a focus on the impact of hold periods during testing (combined creep/relaxation-fatigue conditions) on mechanical softening, lifetime and formation of cracks. The findings will be complemented by results on the modification of the hierarchical ferritic-martensitic microstructure under different loading scenarios. T2 - 4th International Workshop on Thermo-Mechanical Fatigue 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Power plant KW - Tempered martensite ferritic steels KW - Thermo-Mechanical Fatigue KW - Microstructure modification KW - EBSD PY - 2019 AN - OPUS4-50053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -