TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - Solar sintering KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving PY - 2022 SP - 1 EP - 9 AN - OPUS4-56519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -