TY - CONF A1 - Manzoni, Anna Maria T1 - A decade of cube optimization in the Al- Co-Cr-Fe-Ni-Ti high entropy family N2 - The multi-phase approach has proven to widen the application properties of high entropy alloys. After a decade of testing different alloys in the Al-Co-Cr-Cu-Fe-Ni-Ti family the Al10Co25Cr8Fe15Ni36Ti6 was found to be a solid base for more fine-tuned microstructural optimization. Following the example of superalloys, the Al10Co25Cr8Fe15Ni36Ti6 alloy aims for a γ/γ' microstructures in order to guarantee a good microstructural stability at high temperatures. The shape and volume fraction of the γ' particles is known to influence the mechanical properties of superalloys, and they do so in the high entropy family as well [1]. Shape, misfit and creep properties of several modified versions of the Al10Co25Cr8Fe15Ni36Ti6 alloy are compared and discussed in this talk. T2 - Department seminar National Chung Hsing University CY - Taichung, Taiwan DA - 15.11.2023 KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Creep KW - Phase analysis PY - 2023 AN - OPUS4-58979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit A1 - Schriever, Sina T1 - BAM reference data - Results of ASTM E139-11 creep tests on a reference material of Nimonic 75 nickel-base alloy N2 - Results of creep tests on a certified reference material at T = 600°C and a tensile creep load of 160 MPa are provided. The evaluated results include the times to reach 2% and 4% creep strain, respectively, and the creep rate after 400 h. The data were audited and are BAM reference data. KW - Reference data KW - Creep KW - Nickel-base alloy KW - Nimonic 75 KW - Reference material BCR-425 PY - 2021 DO - https://doi.org/10.5281/zenodo.5106606 PB - Zenodo CY - Geneva AN - OPUS4-52970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit T1 - Brinell-Hardness (HBW 2.5/62.5) of Al-alloy EN AW-2618A after different aging times and temperatures N2 - The dataset contains data from Brinell hardness measurements of Al-alloy EN AW-2618A after aging for different times and temperatures. Aging was either load free or with applied tensile load (creep). KW - Aluminium alloy KW - EN AW-2618A KW - Brinell hardness KW - Aging KW - Creep PY - 2022 UR - https://doi.org/10.5281/zenodo.6787085 UR - https://doi.org/10.5281/zenodo.10396823 DO - https://doi.org/10.5281/zenodo.6787084 PB - Zenodo CY - Geneva AN - OPUS4-55158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Brinell-Hardness data (HBW 2.5/62.5) of aluminum alloy EN AW-2618A after different aging times and temperatures JF - Data in Brief N2 - The article covers data on the Brinell hardness of the forged precipitation-hardened aluminum alloy EN AW-2618A in the initial T61 condition (i. e. slightly underaged) and after isothermal aging for up to 25,0 0 0 h at aging temperatures between 160 °C and 350 °C. In addition, the hardness was determined on specimens after creep testing at 190 °C and various stresses. The hardness decreases with increasing ag- ing time due to the microstructural evolution of the harden- ing precipitates. The drop occurs faster the higher the aging temperature. Aging under creep load additionally accelerates the hardness decrease. KW - Aluminum alloy KW - EN AW-2618A KW - Brinell hardness KW - Aging KW - Creep KW - Ostwald ripening KW - Reheating PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567611 DO - https://doi.org/10.1016/j.dib.2022.108830 SN - 2352-3409 VL - 46 PB - Elsevier Inc. AN - OPUS4-56761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep JF - Materials Science & Engineering A N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions JF - High Entropy Alloys & Materials N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C T2 - Proceedings of the International Conference on Aluminium Alloys 16 N2 - A short description of the work done on the topic "Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C" is given. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Degradation KW - Aluminium KW - Creep KW - Coarsening PY - 2018 SN - 978-1-926872-41-4 SP - 99 AN - OPUS4-45284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling JF - Materials Science and Engineering: A N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601576 DO - https://doi.org/10.1016/j.msea.2024.146690 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep investigations on aluminum seals for application in radioactive waste containers T2 - Proceedings of the International Conference on Aluminum Alloys 2018 N2 - In Germany spent nuclear fuel and high level radioactive waste is stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. The used metal seals consist of three components as can be seen in the cross-sectional view in Figure 1. The innermost part is a helical spring that is surrounded by an inner jacket made of stainless steel. The outer jacket that is made of a softer material which in case of assembly in the aforementioned storage containers is silver or aluminum (i.e. Al 99.5). During application the seal is compressed and due to the restoring force of the helical spring, the outer jacket is plastically deformed and adapts to the sealing surface. Hence, leakage paths are closed and the sealing function is generated. In Germany the above-mentioned containers are licensed for up to 40 years of interim storage, which in case extended storage becomes necessary before a final repository is available will have to be extended to even longer periods. Therefore, the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads as well. At Bundesanstalt für Materialforschung und –prüfung (BAM) long-term investigations are being conducted in which seals are assembled in test flanges and aged at temperatures ranging from room temperature to 150°C for accelerated aging. The aged seals are tested semi-annually (after the first 6 months in which the seals are tested more frequently) regarding the sealing performance, the remaining seal force, and the useable resilience upon decompression. Results of these investigations have been published over the past years (e.g. Grelle, Wolff, Probst, Jaunich, & Völzke, 2017; Völzke, Wolff, Probst, Nagelschmidt, & Schulz, 2014). It was found that the seal force and the useable resilience decrease with time and temperature, which is in agreement with the result of other studies (Sassoulas et al., 2006; Wataru et al., 2016) as well. Geometry change of the outer jacket has been identified as the main reason for this seal behavior. At the prevailing operating temperatures and stresses the aluminum is subjected to creep deformation leading to a thinning of the outer jacket. Since the seal groove depth remains unchanged the helical spring expands, which in turn leads to a decrease of the generated spring and seal force. Although the main reason for the change of seal parameters over time and temperature is known, a detailed characterization of the seal behavior and a reliable prediction of the parameter development for aging times that exceed the experimental time frame have not been possible, yet. For deeper understanding of the aging processes, an Investigation program, which is covered in this contribution, is conducted at Bundesanstalt für Materialforschung und –prüfung (BAM) that focusses on the behavior of the aluminum jacket and its influence on the long-term sealing performance. The program investigates properties of material samples as well as the behavior of the seal as a component. Original sheet material of the same aluminum that is used for manufacturing of the seals is investigated in compression creep tests. For this, a DMA (dynamic mechanical analysis) machine is employed (here used for static tests) that allows for a measurement of the specimens deformation under forces of up to 500 N. The advantage of this method is that the original material can be tested in the same shape as used for the seals which is 0.5 mm thick sheet material. For investigation of tensile creep standard specimens are used, that were machined from surrogate material of the same composition and annealing condition. Furthermore, aluminum seals that are cut into smaller segments are assembled in flanges and placed in heating chambers at temperatures ranging from 23°C to 150°C. After different periods of time from 3 days to 300 days the segments are taken out of the flanges and are investigated, thus giving information on different states of aging. Measurements of the development of the seal contact width and the aluminum jacket thickness are done with an optical microscope. Further investigations on the segments will include metallography and hardness measurements. From the detailed material and component behavior including the results of the long-term seal force and useable resilience investigations a better understanding of the overall seal behavior can be gained. The aim is to contribute to the development of material models and analytical approaches for the prediction of the sealing behavior in dependence of time and temperature. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SN - 978-1-926872-41-4 SP - 1 EP - 2 AN - OPUS4-45844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Creep of single-crystals of nickel-base gamma-alloy at high temperatures N2 - Porosity in single-crystal nickel-base superalloys is removed by hot isostatic pressing (HIP) at temperatures above gamma’-solvus where the material is very soft and ductile. For example, single-crystal nickel-base superalloy CMSX-4 is HIPed at temperature 1288 °C, which is slightly higher than the gamma’-solvus temperature of this alloy equal to about 1280 °C. It is assumed that pore shrinking during HIP is mostly due to dislocation creep. Such a modelling of HIP of CMSX-4 was started in our group on the base of results of creep tests of [001] single-crystals at 1288 °C [1]. However, it was found later [2] that the alloy CMSX-4 shows very strong creep anisotropy at 1288 °C. Therefore, for calibration of the creep law, creep tests of different orientations under different stress levels are required at the HIP temperature. This was the main task of present work. Single-crystals of CMSX-4 of axial orientations [001], [011], [123] and [111] were cast by VIAM Moscow and tested by BAM Berlin under creep conditions at 1288 °C and stress levels between 4 MPa and 16 MPa. At all stress levels, the creep rate increases by an order of magnitude when changing the orientation from [001] to [111] with [011] and [123] orientations in between. Such a character of creep anisotropy corresponds to the orientation dependence of the Schmid factor for octahedral glide. The crystal viscoplasticity model developed in [1] was improved to better represent the time induced softening observed during creep. The creep tests for different stresses and orientations as well as pore closure were simulated. The results of pore closure simulation are compared with measurements of porosity decrease during Hiping. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Nickel-base superalloys KW - Creep KW - Single-Crystal PY - 2021 AN - OPUS4-53935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single-crystals of nickel-base superalloys at ultra-high homologous temperature N2 - The creep behavior of single-crystals of the nickel-base superalloy CMSX-4 was investigated at 1288°C, which is the temperature of the hot isostatic pressing (HIP) treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no Gamma’-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g. the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-section area psi of [001] crystals reached nearly 100%, while for a [111] crystal psi=62%. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals didn’t not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. From the shape of deformed specimens and TEM investigations it was concluded that the main strain contribution resulted from <011> {111} octahedral slip. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Nickel-base superalloys KW - Single-crystals KW - Creep PY - 2018 AN - OPUS4-45989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C JF - Materials Science & Engineering A N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 DO - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Fedelich, Bernard ED - Cailletaud, G. ED - Cormier, J. ED - Eggeler, G. ED - Maurel, V. ED - Nazé, L. T1 - Crystal plasticity models: dislocation based T2 - Nickel base single Crystals across length scales N2 - The large number of TEM investigations and the regular microstructure of single-crystal nickel-base superalloys has boosted the development of a number of physically motivated constitutive laws. In contrast to the more phenomenological models discussed in the next chapter, these models use dislocation densities as internal variables. Obvious advantages are that the computed densities can be compared to TEM observations and the Deformation mechanisms can be easier translated into mathematical equations. KW - Nickel-base superalloys KW - Creep KW - Plasticity PY - 2022 SN - 978-0-12-819357-0 SP - 401 EP - 427 PB - Elsevier Inc. ET - 1 AN - OPUS4-53436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Stotzka, R. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Lenze, A. A1 - Gedsun, A. A1 - Hickel, Tilmann A1 - Tsybenko, H. A1 - Chmielowski, M. A1 - Hunke, S. A1 - Shakeel, Y. T1 - Demonstration of the Infrastructure Use Case 02: Framework for curation and distribution of reference datasets N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Metadata schema KW - Syngle Crystal alloy PY - 2023 AN - OPUS4-57924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion JF - Advanced Engineering Materials N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574127 DO - https://doi.org/10.1002/adem.202201581 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Uhlemann, Patrick A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Experimental data from service-like creep-fatigue experiments on grade P92 steel JF - Data in Brief N2 - This article refers to the research article entitled “Creep-Fatigue of P92 in Service-Like Tests with Combined Stress- and Strain-Controlled Dwell Times” [1]. It presents experimental mechanical data from complex service-like creep-fatigue experiments performed isothermally at 620 °C and a low strain amplitude of 0.2 % on tempered martensite-ferritic grade P92 steel. The data sets in text file format provide cyclic deformation (min. and max. stresses) and the total (hysteresis) data of all recorded fatigue cycles for three different creep-fatigue experiments: 1) a standard relaxation fatigue (RF) test with symmetrical dwell times of three minutes introduced at minimum and maximum strain, 2) a fully strain-controlled service-like relaxation (SLR) test combining these three-minute peak strain dwells with a 30-minute dwell in between at zero strain, and 3) a partly stress-controlled service-like creep (SLC) test combining the three-minute peak strain dwells with 30-minute dwells at constant stress. Such service-like (SL) tests with additional long-term stress- and strain-controlled dwell times are non-standard, rare, and expensive, making these data very valuable. They may be used to approximate cyclic softening in the technically relevant range, for the design of complex SL experiments, or for detailed analyses of stress-strain hystereses (e.g., for stress or strain partitioning methods, for the determination of hysteresis energies (work), inelastic strain components, etc.). In addition, the latter analyses may supply important input for advanced parametric lifetime modeling of components under creep-fatigue loading or model calibration parameters. KW - Tempered martensite-ferritic steel KW - Creep KW - Stress relaxation KW - Creep-fatigue KW - Dwell times PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578407 DO - https://doi.org/10.1016/j.dib.2023.109333 SN - 2352-3409 VL - 49 SP - 1 EP - 9 PB - Elsevier Inc. AN - OPUS4-57840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -