TY - JOUR A1 - Scheuerlein, C. A1 - Andrieux, J. A1 - Michels, M. A1 - Lackner, F. A1 - Chiriac, R. A1 - Hagner, M. A1 - Di Michiel, M. A1 - Meyer, Christian A1 - Toche, F. ED - Foley, C. P. T1 - Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires N2 - Accelerator magnets that can reach magnetic fields well beyond the Nb-Ti performance limits are presently being built and developed, using Nb3Sn superconductors. This technology requires reaction heat treatment (RHT) of the magnet coils, during which Nb3Sn is formed from its ductile precursor materials (a “wind and react” approach). The Nb3Sn microstructure and microchemistry are strongly influenced by the conductor fabrication route, and by the Phase changes during RHT. By combining in situ differential scanning calorimetry, high Energy synchrotron x-ray diffraction, and micro-tomography experiments, we have acquired a unique data set that describes in great detail the phase and microstructure changes that take place during the processing of restacked rod process (RRP), powder-in-tube (PIT), and internal tin (IT) Nb3Sn wires. At temperatures below 450 ° the phase evolutions in the three wire types are similar, with respectively solid state interdiffusion of Cu and Sn, Cu6Sn5 formation, and Cu6Sn5 peritectic transformation. Distinct differences in phase evolutions in the wires are found when temperatures exceed 450 °C. The volume changes of the conductor during RHT are a difficulty in the production of Nb3Sn accelerator magnets. We compare the wire diameter changes measured in situ by dilatometry with the phase and void volume evolution of the three types of Nb3Sn wire. Unlike the Nb3Sn wire length changes, the wire diameter evolution is characteristic for each Nb3Sn wire type. The strongest volume increase, of about 5%, is observed in the RRP wire, where the main diameter increase occurs above 600 °C upon Nb3Sn formation. KW - Nb3Sn KW - Microstructure KW - Phase transformations KW - Volume changes KW - X-ray diffraction KW - Differential scanning calorimetry KW - Synchrotron micro-tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505128 DO - https://doi.org/10.1088/1361-6668/ab627c VL - 33 IS - 3 SP - 034004 PB - IOP Publishing CY - Bristol (UK) AN - OPUS4-50512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. T1 - Sintering of silver-alkali zinc borate glass composites N2 - High conductive silver-glass-metallization-pastes are key components in photovoltaics and advanced microelectronics. However, the underlying mechanisms of liquid phase sintering as silver dissolution, diffusion and reprecipitation are poorly understood so far. In the current work, the influence of different network modifier in alkali-zinc-borate paste-glasses on liquid phase sintering of silver-glass-composites was studied. Therefore, silver-glass-composites containing 30 vol% glass were prepared, using low melting X2O-ZnO-B2O3 glasses with X = Na, Li, and Rb (NZB, LZB, and RZB). Glass transition temperature, viscosity, glass-silver wetting, crystallization and sintering behavior was studied by means of thermal analysis, dilatometry, heating microscopy and microscopy. Similar glass transition temperatures of 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB) were found by means of thermal analysis for glasses under study. Also, all glasses have a similar crystallization onset at about 550 °C, even though exhibiting with a different degree of crystallization. Despite these similarities, however, the sintering behavior, measured in terms of area shrinkage, significantly differs for the composites. This finding indicates a different degree of silver dissolution. Assuming that dissolved silver reduces the viscosity, this effect could explain why glass crystallization starts at lower temperature in the composites. For example, the crystallization peak of LZB at 629 °C measured for pure glass powder compacts was decreased to 586 °C for the composite. Confirmatively, microstructure analyses indicate different degrees of silver dissolution, as e.g. revealed by different amount of silver precipitates within the residual glass phase, and reprecipitation. Best silver dissolution appeared for the RZB glass. Nevertheless, the final densification of RZB was retarded probably due to swelling and crystallization. T2 - XRM Workshop CY - Halle, Germany DA - 03.03.2020 KW - Silver-glass-metallization-paste KW - Sintering KW - Alkali ions PY - 2020 AN - OPUS4-51243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten T1 - Viskose Rissschließung in Gläsern und Glasmatrixkompositen N2 - Um die Langzeitbeständigkeit von Hochtemperatur-Festoxidbrennstoffzellen (SOFC) sicherzustellen, ist das grundlegende Verständnis der viskosen Schließung oder Heilung von Rissen, als Folge wechselnder thermischer oder mechanischer Belastung, in Gläsern und teilkristallinen Materialien ein entscheidender Faktor. In Glas ist die Rissheilung hauptsächlich durch viskoses Fließen bestimmt. In teilkristallinen Schmelzen bewirkt der kristalline Volumenanteil die Erhöhung der effektiven Viskosität. Um die Auswirkungen des kristallinen Volumenanteils auf die Rissheilung zu ergründen, wurden Glasmatrixkomposite mit variierten inerten kristallinen Fülleranteilen, die während der Wärme-behandlung konstant blieben, hergestellt. Verwendet wurde ein kristallisationsträges Natrium-Calcium-Silicatglas und ZrO2 als inerter Füller. Komplexe, reproduzierbare Rissstrukturen wurden durch Vickers-Eindrücke erzeugt und die viskose Rissschließung während isothermer Wärmebehandlungs-schritte mittels Laser-Scanning-Mikroskopie verfolgt. Die Untersuchungen zeigen, dass, verglichen zum füllerfreien Glas, der kristalline Phasenanteil die effektive Viskosität erhöht und dadurch großräumiges Fließen verlangsamt. Dies verzögert das Aufweiten der Risse. Dieser Effekt erschwert die Rissverkürzung und führt oftmals zu großen gerundeten Kavitäten und dadurch zu einer verzögerten Rissschließung. Wird dieses Aufweiten verringert, ist zunächst ein lokales viskoses Fließen der Restglasphase weiterhin gegeben, sodass sich die Risse sogar schneller schließen. Für kristalline Anteile > 27 Vol% bildet sich dann ein stabiles Perkolationsgerüst aus, das die weitere Rissschließung auch lokal unterbindet. Nur innerhalb größerer glasiger Bereiche ist hierbei noch eine Rissschließung zu beobachten. Ein Optimum der Risslängenverkürzung konnte bei 17 Vol% beobachtet werden. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glas KW - Hochtemperaturbrennstoffzelle KW - Glasmatrixkomposit KW - Rissheilung PY - 2021 AN - OPUS4-54245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne T1 - Alkali and alkaline earth zinc and lead borate glasses: Structure and properties N2 - Low melting Li2O-PbO-B2O3, Me2O-ZnO-B2O3, Me = Li, Na, K, Rb and CaO-ZnO-B2O3 glasses were studied with Raman and infrared spectroscopies to advance the structural understanding of zinc borate glasses as potential candidates for substitution of lead containing glasses. Although the effect of type of alkali ions on the number (N4) of fourfold coordinated boron (B4) in the glasses is small, the alkali ions direct the type of borate groups, i.e., pentaborate in lithium, sodium, and calcium zinc borate glasses, as well as diborate in potassium and rubidium containing ones. Both groups were simultaneously found in Li2O-PbO-B2O3. Alkali ions are mainly responsible for the formation of B4-units and metaborate. Zinc ions favorably compensate non-bridging oxygen and partially form ZnO4. With decreasing N4 and field strength of the alkali ions the atomic packing density, glass transition temper ature and Young’s Modulus also decrease. The coefficient of thermal expansion increases with decreasing N4. KW - Raman spectroscopy KW - IR spectroscopy KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Physical properties KW - Young’s Modulus PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556109 DO - https://doi.org/10.1016/j.nocx.2022.100109 SN - 2590-1591 VL - 15 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-55610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paskin, A. A1 - Couasnon, T. A1 - Perez, J. P. H. A1 - Lobanov, S. S. A1 - Blukis, R. A1 - Reinsch, Stefan A1 - Benning, L. G. T1 - Nucleation and Crystallization of Ferrous Phosphate Hydrate via an Amorphous Intermediate N2 - The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO4 3−) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+−PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart. KW - Nucleation KW - Crystallization KW - Vivianite KW - Ferrous phosphate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580696 DO - https://doi.org/10.1021/jacs.3c01494 SN - 0002-7863 VL - 145 IS - 28 SP - 15137 EP - 15151 PB - ACS Publications AN - OPUS4-58069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, V.V. A1 - Tielemann, Christopher A1 - Avramova, K. A1 - Reinsch, Stefan A1 - Tonchev, V. T1 - Modelling crystallization: When the normal growth velocity depends on the supersaturation N2 - The crystallization proceeds by the advance of the crystal faces into the disordered phase at the expense of the material excess, the supersaturation. Using a conservation constraint for the transformation ratio α∈[0,1] as complementing the rescaled supersaturation to 1 and a kinetic law for the normal growth velocity as function of the supersaturation raised to power g, the growth order, we derive an equation for the rate of transformation dα/dt. We integrate it for the six combinations of the three spatial dimensions D = 1, 2, 3 and the two canonical values of g = 1, 2 towards obtaining expressions for αDg. The same equation, with g = 1 and D = n (n is the so called Avrami exponent) is obtained when taking only the linear in α term from the Taylor’s expansion around α = 0 of the model equation of Johnson-Mehl-Avrami-Kolmogorov (JMAK). We verify our model by fitting datasets of α21 and α31 (from α = 0 to αupper = 0.999) with JMAK to obtain from the fit n = 1.725, 2.43, resp. We show further how the values of n depend on the value of αupper to which the fit is performed starting always from 0. Towards building a validation protocol, we start with validating α21 with published results. KW - Crystallization KW - Supersaturation KW - Growth kinetics KW - Growth rate KW - JMAK model PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581706 DO - https://doi.org/10.1016/j.jpcs.2023.111542 SN - 0022-3697 VL - 181 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaddam, Anuraag A1 - Galleani, Gustavo A1 - de Lima Reis, Vitor A1 - de Camargo, Andrea S. S. A1 - Eckert, Hellmut T1 - Structural characterization of gallium fluoride phosphate glasses by advanced solid‐state NMR methods and correlation with photophysical properties N2 - AbstractGallium fluoride phosphate glasses feature low refractive index, high energy radiation resistance, wide transmission range, and favorable emission characteristics of rare‐earth dopants. For the development of optimized glass compositions, a fundamental understanding of these properties in terms of glass structure is sought. We report nuclear magnetic resonance (NMR) structural studies of glasses in the system xGa(PO3)3–(40 − x)GaF3–20BaF2–20ZnF2–20SrF2 (x = 5, 10, 15, 20, and 25 mol%). 31P NMR results with 71Ga recoupling show that the network structure is dominated by P–O–Ga linkages, and no P–O–P linkages exist. 71Ga NMR results show that Ga is mainly six‐coordinated featuring a mixed fluoride/phosphate coordination. Quantitative estimates of this ligand distribution around gallium were obtained by 71Ga{31P} spin echo double resonance (REDOR) measurements. Photophysical properties suggest changes in the Eu(III) ligand distribution toward a fluoride‐dominated environment at low P/F ratio while the glass network is largely sustained by bridging oxygen atoms via P–O–Ga linkages. KW - Gallium KW - Glass KW - NMR KW - Oxyfluoride PY - 2024 DO - https://doi.org/10.1111/jace.20051 SN - 0002-7820 SP - 1 EP - 14 PB - Wiley AN - OPUS4-60785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merízio, Leonnam Gotardo A1 - Machado, Ian Pompermayer A1 - Vastamäki, Roosa A1 - de Camargo, Andréa Simone Stucchi A1 - Lastusaari, Mika T1 - Multifunctional persistent luminescent and photochromic hackmanite-based materials prepared by microwave-assisted solid-state synthesis N2 - Advanced optical materials inspired by natural minerals and non-toxic light elements, such as the Hackmanites (Na8Al6Si6O24(Cl,S)2), find vast possibilities of applications as they can simultaneously perform photochromism and persistent luminescence (PersL). In this work, we have explored a rapid and energy-efficient microwaveassisted (MASS) methodology for the synthesis of PersL and photochromic hackmanites. In addition, we have prepared hackmanite materials using a zeolite-free precursor to control the Na–Al–Si ratio and study its influence on the materials photoluminescent properties. The PersL hackmanites showed a white-bluish emission color, with up to 2 h of emission time. Zeolite-free photochromic materials were able to change the color from white to purple/blue efficiently with a few seconds of 254 nm excitation, but the usage of zeolite precursors enhanced the overall optical performance. Microwave synthesis times of 10–40 min were demonstrated to be optimal, as longer times boosted the formation of nepheline spurious phase, which decreases luminescence efficiency. In this way, the MASS method led to a reduction of reaction time up to 98 %, yielding hackmanite materials with similar photoluminescent or photochromic properties compared to those obtained by a 24 h conventional solid-state synthesis. This work represents a significant improvement toward coupling eco-friendly synthetic processes to eco-friendly solid-state materials for PersL illumination and PersL/photochromism optical marking. KW - Hackmanite KW - Persistent luminescence KW - Photochromism KW - Microwave-assisted synthesis PY - 2024 DO - https://doi.org/10.1016/j.optmat.2024.115826 SN - 0925-3467 VL - 155 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GLAS DIGITAL - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Aktuelle Ergebnisse des Projektes GlasDigital werden kurz zusammenfassend und allgemein verständlich vorgestellt. T2 - MatFo 2022 CY - Cologne, Germany DA - 14.11.2022 KW - Oxidglas KW - robotische Glasschmelzanlage KW - Ontologie KW - ML KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina T1 - Glas Digital Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Der aktuelle Stand des Projektes GlasDigital wird in Kurzform präsentiert. T2 - PMD Vollversammlung CY - Online meeting DA - 17.03.2022 KW - Oxidglas KW - robotische Glasschmelzanlage KW - Ontologie KW - ML KW - Digitaler Zwilling KW - Bildanalyse PY - 2022 AN - OPUS4-56493 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlasDigital - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Das Projekt GlasDigital im Rahmen der BMBF Initiative MaterialDigital wird vorgestellt. T2 - MatFo22 CY - Berlin, Germany DA - 14.11.2022 KW - Material Digital PY - 2022 AN - OPUS4-56282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses sought by NMR, EPR & PL N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, expensive, and time consuming, it is desirable to gather fundamental understanding of structure and to develop structure-property relation models, which allow best and faster choices. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to some extent, based on structural information given by magnetic resonance (NMR and EPR) techniques associated to Raman and photophysical characterization. For the past 5 years, one of the interests of my research group at the University of São Paulo, in Brazil, has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides improved mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10-30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by F, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages i.e, the network structures are dominated by Ga-O-P or In-O-P linkages as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity in the vibronic band of Eu3+ and significant increase in the excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+ yielding intense emissions in the blue and green, respectively, compatible to the spectral region of highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the combination of NMR, EPR, Raman and PLE spectroscopies can be to provide structural information and to present the perspectives for their introduction in the research agenda of Division 5.6 – Glass, which I now lead, at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. T2 - GOMD 2024 - Glass and Optical Division Meeting, ACerS CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Glass Digital KW - Glasses KW - Robotic melting PY - 2024 AN - OPUS4-60357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galleani, Gustavo A1 - Lodi, Thiago A. A1 - Conner, Robin L. A1 - Jacobsohn, Luiz G. A1 - de Camargo, Andrea Simone Stucchi T1 - Photoluminescence and X-ray induced scintillation in Gd3+-Tb3+ co-doped fluoride-phosphate glasses, and derived glass-ceramics containing NaGdF4 nanocrystals N2 - The glass system (50NaPO3–20BaF2–10CaF2–20GdF3)-xTbCl3 with x = 0.3, 1, 3, 5, and 10 wt % was investigated. We successfully produced transparent glass ceramic (GC) scintillators with x = 1 through a melt-quenching process followed by thermal treatment. The luminescence and crystallization characteristics of these materials were thoroughly examined using various analytical methods. The nanocrystallization of Tb3+-doped Na5Gd9F32 within the doped fluoride-phosphate glasses resulted in enhanced photoluminescence (PL) and radioluminescence (RL) of the Tb3+ ions. The GC exhibited an internal PL quantum yield of 33 % and the integrated RL intensity across the UV-visible range was 36 % of that reported for the commercial BGO powder scintillator. This research showcases that Tb-doped fluoridephosphate GCs containing nanocrystalline Na5Gd9F32 have the potential to serve as efficient scintillators while having lower melting temperature compared to traditional silicate and germanate glasses. KW - Glass scintillator KW - Fluoride phosphate glasses KW - Gd3+ KW - Tb3+ PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603588 DO - https://doi.org/10.1016/j.omx.2023.100288 VL - 21 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses for scintillation N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is desirable to develop glass compositions based on a fundamental understanding of the glass structure and to establish structure-property relation models. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The local vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to good extent, based on structural information given by magnetic resonance techniques (NMR and EPR), associated to Raman and photophysical characterization. For the past 5 years, while still employed at the University of São Paulo, in Brazil, one of the interests of my research group has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides better mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10 - 30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by fluorine, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages. That is, the network structures are dominated by Ga-O-P or In-O-P linkages, as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity of the vibronic band in Eu3+-doped glasses and marked increase in excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+, yielding intense emissions in the blue and green, respectively, compatible to the spectral region of the highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the NMR and EPR techniques can be to provide decisive structural information, and to present the research perspectives in my new role as the Head of Division 5.6 – Glass at BAM. T2 - Fachausschusses I „Physik und Chemie des Glases“, DGG CY - Jena, Germany DA - 02.11.2023 KW - Structure-property correlation KW - Fluoride phosphate glasses KW - Scintillators KW - High energy radiation PY - 2024 AN - OPUS4-60360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galleani, Gustavo A1 - Lodi, Thiago A1 - Merízio, Leonnam A1 - de Jesus, Vinícius A1 - de Camargo, Andrea Simone Stucchi T1 - Scintillators, persistent luminescent and white light emitters: Progresses on UV and X-ray converting glasses and composites N2 - Recently, detection and conversion of high energy radiation such as ultraviolet and X-rays has gained renewed attention. In part, technological applications in radioimaging and tomography have developed considerably as to allow lower dosages and higher resolutions, which require optimized scintillators and dosimeters. On the other hand, the increasing effort to reduce carbon footprint in energy production has triggered an intensive search for materials that can be excited with sunlight, ranging from photocatalysts to solar concentrators. At LEMAF – Laboratory of Spectroscopy of Functional Materials at IFSC/USP, we have been developing bulk glasses, polycrystalline and composite materials designed to target both challenges and, in this work an overview of recent progresses and of the state of art of these materials will be given. For instance, the few available comercial scintillators are crystalline materials with costly and time consuming growth which hinders the development of new compositions. Glasses and glass ceramics, such as the NaPGaW composition developed in our lab, present high density, very good optical properties and high chemical stability which allow them radioluminescent response when doped with low concentrations of Ce3+, Eu3+ and Tb3+ offering a promise as alternatives to crystal scintillators. On the other hand, phosphor in glass (PiG) composites based on the persistent luminescent polycrystalline material Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) embedded into NaPGa glasses offer interesting perspectives for the of UV light into visible, useful for white light generation (lighting), improved harvesting and conversion of solar light when coupled to c-Si PV cells and photocatalysis. These and other examples will be discussed. The glasses are prepared through the conventional melt quenching technique, followed by controlled heating when glass ceramics are desired. The persistent luminescent phosphor is prepared by the microwave assisted technique (MAS) much faster and with considerable energy consumption reduction than in the usual solid state synthesis. The materials are characterized from the structural, morphological and spectroscopic (optical – UV-Vis, PL, PLE, and structural – NMR, EPR) points of view such that structure-property correlations are constantly sought to feedback synthesis and processing. Fig. 1, illustrates two examples of scintillator glasses doped with Tb3+ and PiG composites doped with Eu2+ and Dy3+. T2 - 11th International Conference on f Elements (ICFE-11) CY - Strasbourg, France DA - 22.08.2023 KW - Scintillators KW - Persistent luminescence KW - White light emitters PY - 2023 AN - OPUS4-60361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Optical properties of dental ceramics: Characterization via UV-Vis and photoluminescence spectroscopies N2 - When it comes to dental treatments, success is not only measured by attained functionality but, to a large extent, the associated aesthetics. This can become challenging for certain restorations and implants due to the complex optical characteristic of a tooth, which reflects, absorbs, diffuses, transmits, and even emits light. Thus, to get acceptable aesthetic results, favourable shade matching of ceramic restorations and implants should be achieved by strict control of optical response, which translates into a materials design question. Optical response is affected by several factors such as the composition, crystalline content, porosity, additives, grain size and the angle of incidence of light on the dental ceramics. The properties to be characterized are colour (and its stability), translucency, opalescence, refractive index, and fluorescence. Several techniques can be applied for the characterization of these properties and in this presentation, an overview will be given. Moreover, particular emphasis will be given on the capacitation of less familiarized public to UV-Vis absorption and photoluminescence (PLE) spectroscopies that are versatile and widely employed for functional and structural characterization of glasses and glass ceramic materials. T2 - 2nd BAYLAT Workshop of CERTEV - FAU CY - Nuremberg, Germany DA - 04.12.2023 KW - Optical properties KW - Dental ceramics KW - Optical spectroscopy PY - 2023 AN - OPUS4-60364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Glass Digitalization: Contributions from BAM N2 - An overview of the Glass Digitalization efforts at BAM, within the framework of the Glass Digital consortium, was given. From the development of the robotic melting device to the ML capabilities, a description of the different stages of the developments and roles of project partner was presented. T2 - GlaCerHub Melting Day CY - Oponice, Slovakia DA - 12.06.2024 KW - Glass Digital KW - Robotic glass melting KW - Digitalization PY - 2024 AN - OPUS4-60365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Gender equality in Sciences: Let´s teach our girls to be brave! N2 - A panorama of the global gender gap scenario in sciences, specially STEM, was given to illustrate the need for urgent actions (and suggestions of them) to correct biased treatment and promote females in their scientific careers. T2 - FunGlass School CY - Oponice, Slovakia DA - 10.06.2024 KW - Gender gap KW - Women in science KW - Female noble prize winners PY - 2024 AN - OPUS4-60366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Spectroscopy Lectures N2 - As a guest professor of FUNGLASS, I delivered 3 lectures on spectroscopy to the Graduate School Program, the postdoctoral fellows and other researchers: 1) Introduction to spectroscopy applied to solid state materials (with focus on glass and glass ceramics); 2) Vibrational spectroscopy (Infrared and Raman); 3) Electron Paramagnetic Resonance T2 - FunGlass CY - Trencín, Slovakia DA - 03.06.2024 KW - Spectroscopy KW - Radiation-matter interaction KW - FT-IR KW - Raman KW - EPR PY - 2024 AN - OPUS4-60367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -